题名

瞭解直播社群中持續捐助意圖之形成:以回饋觀點為基礎

并列篇名

Understanding the Formation of Continuous Donation Intention in Live Streaming: A Feedback Perspective

作者

洪憶華(I-Hua Hung);周斯畏(Shih-Wei Chou)

关键词

依附 ; 持續捐助意圖 ; 社會科技觀點 ; 動機式回饋 ; 社交媒體焦慮 ; Attachment ; continuous donation intention ; socio-technical perspective ; motivational feedback ; social media anxiety

期刊名称

資訊管理學報

卷期/出版年月

28卷1期(2021 / 01 / 31)

页次

1 - 36

内容语文

繁體中文

中文摘要

雖然直播社群快速成長與利益彰顯,使用者持續捐助意圖之形成仍未有較確切的說法。為解決此問題,本研究應用動機式回饋觀點,包括情感回饋與社交回饋,以及依附心理以檢測相關研究模型並解釋前述持續捐助意圖如何受其影響,及動機式回饋如何受社會科技因素所影響。同時,本研究也探討社交媒體焦慮對社會科技因素與動機式回饋二者關係的影響。本研究模型針對Twitch平台使用者,共收集212份問卷,結果確認,社會科技因素之認同感與遠距臨場感是影響直播社群中個人動機式回饋的主要前置因素,並可進而影響依附與持續捐助意圖。此外,社交媒體焦慮對社會科技因素與動機式回饋之關係亦有顯著的調節效果。本研究認為觀看者依附直播主及持續捐助意圖受個人社交滿足影響,動機式回饋則是以感知價值與科技應用為基礎,並可反映於個人內在情感、社交關係,及行為意圖。本研究同時考量社會科技因素、動機式回饋等面向應能對直播社群使用之理論與實務有一定的貢獻。

英文摘要

Purpose-This study aims to investigate how viewers' continued behavior is affected by motivational feedback, social-technical factors, and anxiety in the live-stream context. Design/methodology/approach-The proposed model is examined by survey method through data collection from 212 users of Twitch and PLS data analysis. Findings-This study finds that socio-technical factors, in terms of identification and telepresence, are the most significant antecedents influencing motivational feedback in live streaming, which in turn affect attachment and continuous donation intention. Besides, the moderating effect of social media anxiety on the relationships between socio-technical factors and motivational feedback is significant. Research limitations/implications-Similar to other cross-sectional surveys, this study has limitation in understanding about attributing and substantiating affirmative causality. Practical implications-This study deepens our understanding about how viewers are motivated by their feedback, social-technical factors of live-streaming, and media anxiety. This enables streamers and live-stream managers to better manage live-stream participation from increasing incentive and removing anxiety. Originality/values-This study suggests that viewers' feeling and continuous donation intention are chiefly affected by motivational feedback and socio-technical factors. When participating in live streaming, positive feeling experiences and personal relationships may change individual behavioral principle, meanwhile, the affective and social cognition are also affected by technology and presence.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Aarts, H.(Ed.),Elliot, A.(Ed.)(2011).Goal-directed Behavior.Hove, East Sussex, U.K.:Psychology Press.
  2. Ashforth, B.E.,Mael, F.(1989).Social identity theory and the organization.Academy of Management Review,14(1),20-39.
  3. Baron, R.M.,Kenny, D.A.(1986).The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.Journal of Personality and Social Psychology,51(6),1173-1182.
  4. Bhattacherjee, A.(2001).Understanding information systems continuance: An expectation-confirmation model.MIS Quarterly,25(3),351-370.
  5. Brady, M.K.,Noble, C.H.,Utter, D.J.,Smith, G.E.(2002).How to give and receive: An exploratory study of charitable hybrids.Psychology & Marketing,19(11),919-944.
  6. Brown, T.J.,Barry, T.E.,Dacin, P.A.,Gunst, R.F.(2005).Spreading the word: Investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context.Journal of Academy of Marketing Science,33(2),23-138.
  7. Chen, C.,Lin, Y.(2018).What drive live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement.Telematics and Informatics,35(1),293-303.
  8. Chin, W.W.,Marcolin, B.L.,Newsted, P.R.(2003).Apartial least squares latent variable modeling approach for measuring interaction effects - Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study.Information Systems Research,14(2),189-217.
  9. Choi, N.(2013).Information systems attachment: An empirical exploration of its antecedents and its impact on community participation intention.Journal of the American Society of Information Science and Technology,64(11),2354-2365.
  10. Clore, G.L.,Huntsinger, J.R.(2007).How emotions inform judgment and regulate thought.Trends in Cognitive Sciences,11(9),393-399.
  11. Custers, R.,Aarts, H.(2005).Positive affect as implicit motivator: On the nonconscious operation of behavioral goals.Journal of Personality and Social Psychology,89(2),129-142.
  12. Faiola, A.,Newlon, C.,Pfaff, M.,Smyslova, O.(2013).Correlating the effects of flow and telepresence in virtual worlds: Enhancing our understanding of user behavior in game-based learning.Computer and Human Behavior,29,1113-1121.
  13. Fornell, C.,Larker, D.F.(1981).Evaluating structural equation models with unobservable and measurement error.Journal of Marketing Research,18(3),39-50.
  14. Gao, W.,Liu, Y.,Liu, Z.,Li, J.(2018).How does presence influence purchase intention in online shopping markets? An explanation based on self-determination theory.Behavior and Information Technology,37(8),786-799.
  15. Guo, Z.,Xiao, L.,Van Toorn, C.,Lai, Y.,Seo, C.(2016).Promoting online learners’ continuance intention: An integrated flow framework.Information & Management,53(2),279-295.
  16. Hair, J.F.,Anderson, R.E.,Tatham, R.L.,Black, W.C.(1998).Multivαriate Data Analysis.Englewood, Cliffs, NJ, NSA:Prentice Hall.
  17. Hamilton, W.A.,Garretson, O.,Kerne, A.(2014).Streaming on Twitch: Fostering participatory communities of play within live mixed media.Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14),Toronto, ON, Canada:
  18. Hassan, L.,Dias, A.,Hamari, J.(2019).How motivational feedback increases user’s benefits and continued use: A study on gamification, quantified-self and social networking.International Journal of Information Management,46,151-162.
  19. Hattie, J.T.,Timperley, H.(2007).The power of feedback.Review of Educational Research,77(1),81-112.
  20. High, A.C.,Caplan, S.E.(2009).Social anxiety and computer-mediated communication during initial interactions: Implications for the hyper personal perspective.Computer and Human Behavior,25(2),475-482.
  21. Hilvert-Bruce, Z.,Neill, J.T.,Sjoblom, M.,Hamari, J.(2018).Social motivations of live-streaming viewer engagement on Twitch.Computers in Human Behavior,84,58-67.
  22. Huang, H.C.,Pham, T.T.L.,Wong, M.K.,Chiu, H.Y.,Yang, Y.H.,Teng, C.I.(2018).How to create flow experience in exergames? Perspective of flow theory.Telematics and Informatics,35(5),1288-1296.
  23. Kenney, M.,Zysman, J.,Kushida, K.,Murray, J.,Christian, N.(2016).The rise of the platform economy.Issues in Science & Technology,32(3),61-69.
  24. Lombard, M.,Ditton, T.(1997).At the heart of it all: The concept of presence.Journal of Computer-Mediated Communication,3(2)
  25. Ma, M.,Agarwal, R.(2007).Through a glass darkly: Information technology design, identity verification, and knowledge contribution in online communities.Information Systems Research,18(1),42-67.
  26. Ou, C.X.,Pavlou, P.A.,Davison, R.M.(2014).Swift Guanxi in online marketplaces: The role of computer-mediated communication technologies.MIS Quarterly,38(1),209-230.
  27. Pelet, J.E.,Ettis, S.,Cowart, K.(2017).Optimal experience of flow enhanced by telepresence: Evidence from social media use.Information & Management,54(1),115-128.
  28. Podsakoff, P.M.,MacKenzie, S.B.,Lee, J.Y.,Podsakoff, N.P.(2003).Common method biases in behavioral research: A critical review of the literature review and the recommended remedies.Journal of Applied Psychology,88(5),879-903.
  29. Ryan, R.M.,Deci, E.L.(2000).Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being.The American Psychologist,55(1),68.
  30. Salehan, M.,Kim, D. J.,Kim, C.(2017).Use of online social networking services from a theoretical perspective of the motivation-participation-performance framework.Journal of the Association for Information Systems,18(2),141-172.
  31. Shiau, W.L.,Dwivedi, Y.K.,Lai, H.H.(2018).Examining the core knowledge on Facebook.International Journal of Information Management,43,52-63.
  32. Stafford, T.F.,Stafford, M.R.,Schkade, L.L.(2004).Determining uses and gratifications for the Internet.Decision Sciences,35(2),259-288.
  33. Stever, G.S.(2011).Fan behavior and lifespan development theory: Explaining para-social and social attachment to celebrities.Journal of Adult Develop,18(1),1-7.
  34. Sullivan, Y.W.,Koh, C.E.(2019).Social media enablers and inhibitors: Understanding their relationships in a social networking site context.International Journal of Information Management,49,170-189.
  35. Sun, Y.,Shao, X.,Li, X.,Guo, Y.,Nie, K.(2019).How live streaming influences purchase intentions in social commerce: An IT affordance perspective.Electronic Commerce Research and Applications,37,1-12.
  36. Thatcher, J.B.,Perrewe, P.L.(2002).An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy.MIS Quarterly,26(4),381-396.
  37. Törhönen, M.,Sjöblom, M.,Hassan, L.,Hamari, J.(2020).Fame and fortune, or just fun? A study on why people create content on video platforms.Internet Research,30(1),165-190.
  38. Trist, E.L.(1963).Organizational Choice.London:Tavistock Publications.
  39. Tuškej, U.,Golob, U.,Podnar, K.(2013).The role of consumer brand identification in building brand relationships.Journal of Business Research,66,53-59.
  40. Venkatesh, V.,Davis, F.D.(2000).A theoretical extension of the technology acceptance model: Four longitudinal field studies.Management Science,46(2),186-204.
  41. Wan, J.,Lu, Y.,Wang, B.,Zhao, L.(2017).How attachment influences users’ willingness to donate to content creators in social media: A socio-technical systems perspective.Information & Management,54,837-850.
  42. Wongkitrungrueng, A.,Assarut, N.(2020).The role of live streaming in building consumer trust and engagement with social commerce sellers.Journal of Business Research,117,543-556.
  43. Xu, J.D.(2016).Retaining customers by utilizing technology-facilitated chat: Mitigating website anxiety and task complexity.Information & Management,53(5),554-569.
  44. Yu, E.,Jung, C.,Kim, H.,Jung, J.(2018).Impact of viewer engagement on gift-giving in live video streaming.Telematics and Informatics,35(5),1450-1460.
  45. Zhang, P.(2013).The affective response model: A theoretical framework of affective concepts and their relationships in the ICT context.MIS Quarterly,37(1),247-274.
  46. Zhang, P.(2008).Motivational affordances: Reasons for ICT design and use.Communications of the ACM,51(11),145-147.
  47. Zhou, J.,Zhou, J.,Ding, Y.,Wang, H.(2019).The magic of danmaku: A social interaction perspective of gift sending on live streaming platforms.Electronic Commerce Research and Applications,34,100815.
  48. Zhou, Z.,Fang, Y.,Vogel, D.,Jin, X.,Zhang, X.(2012).Attracted or locked in? Predicting continuance intention in social virtual world services?.Journal of Management Information Systems,29(1),273-305.
被引用次数
  1. 陳瓊燕,陳于嫻,邱紹群,林思賢(2023)。AR美圖濾鏡可否展現與接納自我?。管理資訊計算,12(1),73-88。
  2. 蘇芳儀,楊文淵,邱兆民(2022)。應用刺激-有機體-反應理論與心流理論以探討Instagram限時動態使用者黏著度之影響因素。資訊管理學報,29(4),397-432。