参考文献
|
-
Bhandary, A.,Prabhu, G.A.,Rajinikanth, V.,Thanaraj, K.P.,Satapathy, S.C.,Robbins, D.E.,Shasky, C.,Zhang, Y.-D.,Tavares, J.M.R.S.,Raja, N.S.M.(2020).Deep-Learning Framework to Detect Lung Abnormality - A study with Chest X-Ray and Lung CT Scan Images.Pattern Recognition Letters,129,271-278.
-
Demšar, J.(2006).Statistical Comparisons of Classifiers over Multiple Data Sets.Journal of Machine Learning Research,7(1),1-30.
-
Despins, L.A.(2017).Automated detection of sepsis using electronic medical record data: a systematic review.Journal for Healthcare Quality,39(6),322-333.
-
Doi, K.,Yuen, P.S.,Eisner, C.,Hu, X.,Leelahavanichkul, A.,Schnermann, J.,Star, R.A.(2009).Reduced production of creatinine limits its use as marker of kidney injury in sepsis.Journal of the American Society of Nephrology: JASN,20(6),1217-1221.
-
Fairchild, K.D.,O'Shea, T.M.(2010).Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis.Clinics in Perinatology,37(3),581-598.
-
Froon, A.H.,Bemelmans, M.H.,Greve, J.W.,van der Linden, C.J.,Buurman, W.A.(1994).Increased plasma concentrations of soluble tumor necrosis factor receptors in sepsis syndrome: correlation with plasma creatinine values.Critical Care Medicine,22(5),803-809.
-
Gultepe, E.,Green, J.P.,Nguyen, H.,Adams, J.,Albertson, T.,Tagkopoulos, I.(2014).From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system.Journal of the American Medical Informatics Association,21(2),315-325.
-
Hao, P.-Y.,Kung, C.-F.,Chang, C.-Y.,Ou, J.-B.(2020).Predicting Stock Price Trends Based on Financial News Articles and Using a Novel Twin Support Vector Machine with Fuzzy Hyperplane.Applied Soft Computing
-
Hatfield, K.M.,Dantes, R.B.,Baggs, J.,Sapiano, M.R.P.,Fiore, A.E.,Jernigan, J.A.,Epstein, L.(2018).Assessing variability in hospital-level mortality among US medicare beneficiaries with hospitalizations for severe sepsis and septic shock.Critical Care Medicine,46(11),1753-1760.
-
Hinton, G.E.,Salakhutdinov, R.R.(2006).Reducing the dimensionality of data with neural networks.Science,313,504-507.
-
Huang, F.J.,LeCun, Y.(2006).Large-scale Learning with SVM and Convolutional for Generic Object Categorization.2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,New York, USA:
-
Islam, M.M.,Nasrin, T.,Walther, B.A.,Wu, C.C.,Yang, H.C.,Li, Y.C.(2019).Prediction of sepsis patients using machine learning approach: a meta-analysis.Computer Methods and Programs in Biomedicine,170,1-9.
-
Kok, C.,Jahmunah, V.,Oh, S.L.,Zhou, X.,Gururajan, R.,Tao, X.,Cheong, K.H.,Gururajan, R.,Molinari, F.,Acharya, U.R.(2020).Automated prediction of sepsis using temporal convolutional network.Computers in Biology and Medicine,127(103957),1-10.
-
Kumar, A.,Roberts, D.,Wood, K.E.,Light, B.,Parrillo, J.E.,Sharma, S.,Suppes, R.,Feinstein, D.,Zanotti, S.,Taiberg, L.,Gurka, D.,Kumar, A.,Cheang, M.(2006).Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock.Critical Care Medicine,34(6),1589-1596.
-
Lauritsen, S.M.,Kalør, M.E.,Kongsgaard, E.L.,Lauritsen, K.M.,Jørgensen, M.J.,Lange, J.,Thiesson, B.(2020).Early detection of sepsis utilizing deep learning on electronic health record event sequences.Artificial Intelligence in Medicine,104(1820),1-11.
-
Lin, C.,Zhang, Y.,Ivy, J.,Capan, M.,Arnold, R.,Huddleston, J.M.,Chi, M.(2018).Early Diagnosis and Prediction of Sepsis Shock by Combining Static and Dynamic Information Using Convolutional-LSTM.2018 IEEE International Conference on Healthcare Informatics (ICHI),New York:
-
Mao, Q.,Jay, M.,Hoffman, J.L.,Calvert, J.,Barton, C.,Shimabukuro, D.,Shieh, L.,Chettipally, U.,Fletcher, G.,Kerem, Y.,Zhou, Y.,Das, R.(2018).Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU.BMJ Open,8(1),e017833.
-
Nemati, S.,Holder, A.,Razmi, F.,Stanley, M.D.,Clifford, G.D.,Buchman, T.G.(2018).An interpretable machine learning model for accurate prediction of sepsis in the ICU.Critical Care Medicine,46(4),547-553.
-
Nguyen, H.B.,Rivers, E.P.,Knoblich, B.P.,Jacobsen, G.,Muzzin, A.,Ressler, J.A.,Tomlanovich, M.C.(2004).Early lactate clearance is associated with improved outcome in severe sepsis and septic shock.Critical Care Medicine,32(8),1637-1642.
-
Paoli, C.J.,Reynolds, M.A.,Sinha, M.,Gitlin, M.,Crouser, E.(2018).Epidemiology and costs of sepsis in the United States-an analysis based on timing of diagnosis and severity level.Critical Care Medicine,46(12),1889-1897.
-
Pierrakos, C.,Vincent, J.-L.(2010).Sepsis biomarkers: a review.Critical Care,14(R15),1-18.
-
Rafiei, A.,Rezaee, A.,Hajati, F.,Gheisari, S.,Golzan, M.(2021).SSP: Early prediction of sepsis using fully connected LSTM-CNN model.Computers in Biology and Medicine,128(104110),1-10.
-
Saqib, M.,Sha, Y.,Wang, M.D.(2018).Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks.40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
-
Shimabukuro, D.W.,Barton, C.W.,Feldman, M.D.,Mataraso, S.J.,Das, R.(2017).Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial.BMJ Open Respiratory Research,4(1),e000234.
-
Smith, G.B.,Prytherch, D.R.,Meredith, P.,Schmidt, P.E.,Featherstone, P. I.(2013).The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death.Resuscitation,84(4),465-470.
-
Taneja, I.,Reddy, B.,Damhorst, G.,Dave Zhao, S.,Hassan, U.,Price, Z.,Jensen, T.,Ghonge, T.,Patel, M.,Wachspress, S.,Winter, J.,Rappleye, M.,Smith, G.,Healey, R.,Ajmal, M.,Khan, M.,Patel, J.,Rawal, H.,Sarwar, R.,Zhu, R.(2017).Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis.Scientific Reports,7(10800),1-12.
-
Tao, X.,Li, Q.,Ren, C.,Guo, W.,He, Q.,Liu, R.,Zou, J.(2020).Affinity and class probability-based fuzzy support vector machine for imbalanced data sets.Neural Networks,122,289-307.
-
Taylor, R.A.,Pare, J.,Venkatesh, A.,Mowafi, H.,Melnick, E.,Fleischman, W.,Hall, M.K.(2016).Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach.Academic Emergency Medicine,23(3),269-278.
-
Torio, C.M.,Moore, B.J.(2016).National Inpatient Hospital Costs: the Most Expensive Conditions by Payer, 2013.Healthcare Cost and Utilization Project (HCUP) Statistical Briefs,204,2006-2016.
-
Xu, B.,Shirani, A.,Lo, D.,Alipour, M.A.(2018).Prediction of relatedness in stack overflow: deep learning vs. SVM: a reproducibility study.Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM '18),New York, USA:
-
Ye, Y.,Tian, M.,Liu, Q.,Tai, H.-M.(2020).Pulmonary Nodule Detection Using V-Net and High-Level Descriptor Based SVM Classifier.IEEE Access,8,176033-176041.
|