题名

Fraud Detection for Corporate Asset Misappropriation

并列篇名

企業資產掏空偵測

作者

陳育仁(Yuh-Jen Chen)

关键词

Asset misappropriation ; fraud detection ; principal component analysis ; stepwise regression ; support vector machine ; queen genetic algorithm ; 資產掏空 ; 舞弊偵測 ; 主成分分析 ; 逐步迴歸 ; 支援向量機 ; 改良式基因演算法

期刊名称

資訊管理學報

卷期/出版年月

29卷1期(2022 / 01 / 31)

页次

75 - 101

内容语文

英文

中文摘要

Management fraud is a major concern among investors. Misstated financial statements, asset misappropriation, and insider trading are common forms of fraud by enterprises. Among these, asset misappropriation presents the highest risk for substantial losses as it may result in corporate shutdown and the loss of the life savings of investors. Therefore, identifying methods to effectively detect bad management at the earliest and prevent corporate asset misappropriation is critical in the study of fraud audits. This study considers several financial structure indicators - solvency, operating capacity, profitability, cash flow, and growth ability. It also examines several non-financial indicators - shareholding structure, board composition, related party transactions, and management style in corporate governance. The feature indicators for asset misappropriation detection are first established through principal component analysis and stepwise regression. Support vector machine (SVM) and queen genetic algorithm (QGA) are then combined to effectively detect corporate asset misappropriation, providing a reference to investors and creditors for investment decision-making and thereby reducing their investment risks. This objective is achieved by (i) establishing feature indicators for asset misappropriation detection, (ii) developing an asset misappropriation detection method, and (iii) demonstrating and evaluating the proposed method.

英文摘要

對於投資大眾來說,最關注其投資的企業是否發生舞弊之現象;而企業最常見的舞弊手法包括財報不實、資產掏空與內線交易等,其中又以資產掏空所造成的後果最為嚴重,可能導致整個企業停擺,使得投資者血本無歸。因此,如何有效的偵測企業掏空與否,已成為舞弊審計重要的課題之一。本研究主要考量企業財務結構、償債能力、經營能力、獲利能力、現金流量與成長力等財務性指標以及公司治理方面之股權結構、董監事組成、關係人交易與管理型態等非財務性指標,並經由主成分分析與逐步迴歸進行資產掏空偵測指標之建立,再整合支援向量機與改良式基因演算法進行企業資產掏空之偵測,以提供投資大眾選擇目標企業投資時之決策參考,進而降低投資者之投資風險。針對上述目的,本研究主要研究項目包括:(i)資產掏空偵測特徵指標之建立,(ii)資產掏空偵測方法之發展以及(iii)資產掏空方法之驗證與評估。

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Achilles, W. W.(2006).Virginia Commonwealth University.
  2. Akman, E.,Karaman, A. S.,Kuzey, C.(2020).Visa trial of international trade: evidence from support vector machines and neural networks.Journal of Management Analytics,7(2),231-252.
  3. Bartlett, M. S.(1951).A further note on tests of significance in factor analysis.British Journal of Statistical Psychology,4(1),1-2.
  4. Brazel, J. F.,Jones, K. L.,Zimbelman, M. F.(2009).Using nonfinancial measures to assess fraud risk.Journal of Accounting Research,47(5),1135-1166.
  5. Button, M.(2008).Doing security: critical reflections and an agenda for change.Palgrave MacMillan.
  6. Button, M.,Gee, J.(2013).Countering fraud for competitive advantage.Chichester:John Wiley & Sons Ltd.
  7. Cecchini, M.,Aytug, H.,Koehler, G. J.,Pathak, P.(2010).Making words work: using financial text as a predictor of financial events.Decision Support Systems,50(1),164-175.
  8. Chen, H. J.,Huang, S. Y.,Kuo, C. L.(2009).Using the artificial neural network to predict fraud litigation: some empirical evidence from emerging markets.Expert Systems with Applications,36(2),1478-1484.
  9. Chen, M. Y.(2011).Predicting corporate financial distress based on integration of decision tree classification and logistic regression.Expert Systems with Applications,38(9),11261-11272.
  10. Chen, M. Y.(2011).Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches.Computers & Mathematics with Applications,62(12),4514-4524.
  11. Chen, W. S.,Du, Y. K.(2009).Using neural networks and data mining techniques for the financial distress prediction model.Expert Systems with Applications,36(2),4075-4086.
  12. Chen, Y. J.,Liou, W. C.,Chen, Y. M.,Wu, J. H.(2019).Fraud detection for financial statements of business groups.International Journal of Accounting Information Systems,32,1-23.
  13. Chen, Y. J.,Wu, C. H.,Chen, Y. M.,Li, H. Y.,Chen, H. K.(2017).Enhancement of fraud detection for narratives in annual reports.International Journal of Accounting Information Systems,26,32-45.
  14. Claessens, S.,Djankov, S.,Fan, P. H.,Lang, H. P.(2002).Disentangling the incentive and entrenchment effects of large shareholdings.The Journal of Finance,57(6),2741-2771.
  15. Connelly, J. T.,Limpaphayom, P.,Nagarajan, N. J.(2012).Form versus substance: the effect of ownership structure and corporate governance on firm value in Thailand.Journal of Banking & Finance,36(6),1722-1743.
  16. Cortes, C.,Vapnik, V.(1995).Support-vector networks.Machine Learning,20(3),273-297.
  17. Depczynski, U.,Frost, V. J.,Molt, K.(2000).Genetic algorithms applied to the selection of factors in principal component regression.Analytica Chimica Acta,420(2),217-227.
  18. Farhan, A. S.,Tareq, W. Z.,Awad, F. H.(2015).Solving N queen problem using genetic algorithm.International Journal of Computer Applications,122(12),11-14.
  19. Gates, S.,Sullivan, C.(2013).Asset misappropriation and the death of a mayor.Journal of Business Cases & Applications,8
  20. Glancy, F. H.,Yadav, S. B.(2011).A computational model for financial reporting fraud detection.Decision Support Systems,50(3),595-601.
  21. Goel, R.(2013).Integrating a systems approach to detect risk of insider trading.International Journal of Humanities and Social Science,3(19),21-26.
  22. Hajek, P.,Henriques, R.(2017).Mining corporate annual reports for intelligent detection of financial statement fraud - a comparative study of machine learning methods.Knowledge-based Systems,128,139-152.
  23. Harris, T.(2015).Credit scoring using the clustered support vector machine.Expert Systems with Applications,42(2),741-750.
  24. Hsiao, H. F.,Lin, S. H.,Hsu, A. C.(2010).Earnings management, corporate governance, and auditor’s opinions: a financial distress prediction model.Investment Management and Financial Innovations,7(3),29-40.
  25. Joachims, T.(1998).Text categorization with support vector machines: learning with many relevant features.European Conference on Machine Learning
  26. Jolliffe, I. T.(2002).Principal component analysis.
  27. Kaiser, H. F.(1974).An index of factorial simplicity.Psychometrika,39(1),31-36.
  28. Karim, Z. A.,Said, J.,Bakri, H. H. M.(2015).An exploratory study on the possibility of assets misappropriation among Royal Malaysian police officials.Procedia Economics and Finance,31,625-631.
  29. Kassem, R.(2014).Detecting asset misappropriation: a framework for external auditors.International Journal of Accounting Auditing and Performance Evaluation,10(1),1-42.
  30. Kazemian, S.,Said, J.,Hady Nia, E.,Vakilifard, H.(2019).Examining fraud risk factors on asset misappropriation: evidence from the Iranian banking industry.Journal of Financial Crime,26(2),447-463.
  31. Kim, S. Y.,Upneja, A.(2014).Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models.Economic Modeling,36,354-362.
  32. Koomson, T. A. A.,Owusu, G. M. Y.,Bekoe, R. A.,Oquaye, M.(2020).Determinants of asset misappropriation at the workplace: the moderating role of perceived strength of internal controls.Journal of Financial Crime,27(4),1191-1211.
  33. Kumar, P. R.,Ravi, V.(2007).Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review.European Journal of Operational Research,180(1),1-28.
  34. Lehman, C. M.(2015).Asset misappropriation schemes: short cases for use in the classroom.Journal of Forensic & Investigative Accounting,7(2),340-362.
  35. Li, H.,Li, C. J.,Wu, X. J.,Sun, J.(2014).Statistics-based wrapper for feature selection: an implementation on financial distress identification with support vector machine.Applied Soft Computing,19,57-67.
  36. Li, Y.,Zhang, Q.(2011).The application of principal component analysis on financial analysis in real estate listed company.Procedia Engineering,15,4499-4503.
  37. Lin, R. H.,Wang, Y. T.,Wu, C. H.,Chuang, C. L.(2009).Developing a business failure prediction model via RST.GRA and CBR, Expert Systems with Applications,36(2, Part 1),1593-1600.
  38. Mustafa, S. T.,Ben Youssef, N.(2010).Audit committee financial expertise and misappropriation of assets.Managerial Auditing Journal,25(3),208-225.
  39. Nia, E. H.,Said, J.(2015).Assessing fraud risk factors of assets misappropriation: evidences from Iranian banks.Procedia Economics and Finance,31,919-924.
  40. Olmo, J.,Pilbeam, K.,Pouliot, W.(2011).Detecting the presence of insider trading via structural break tests.Journal of Banking & Finance,35(11),2820-2828.
  41. Pai, P. F.,Hsu, M. F.,Wang, M. C.(2011).A support vector machine-based model for detecting top management fraud.Knowledge-Based Systems,24(2),314-321.
  42. Park, Y. S.,Lee, J.(2010).Detecting insider trading: the theory and validation in Korea Exchange.Journal of Banking & Finance,34(9),2110-2120.
  43. Parng, Y. J.,Fu, C. J.(2011).Detecting firms with going-concern risk based on the industry affiliation, corporate governance characteristics, and financial performance.African Journal of Business Management,5(22),9249-9261.
  44. Platt, H.,Platt, M.(2012).Corporate board attributes and bankruptcy.Journal of Business Research,65(8),1139-1143.
  45. Prost, L.,Makowski, D.,Jeuffroy, M. H.(2008).Comparison of stepwise selection and Bayesian model averaging for yield gap analysis.Ecological Modelling,219(1-2),66-76.
  46. Ramakalyan, A.,Sivakumar, A.,Aravindan, C.,Kannan, K.,Swaminathan, V.,Sarala, D.(2016).Development of KSVGRNN: A hybrid soft computing technique for estimation of boiler flue gas components.Journal of Industrial Information Integration,4,42-51.
  47. Ravisankar, P.,Ravi, V.,Rao, G. R.,Bose, I.(2011).Detection of financial statement fraud and feature selection using data mining techniques.Decision Support Systems,50(2),491-500.
  48. Sameer Taher, M.(2003).Cleveland State University.
  49. Schwartz, M.(2013).Developing and sustaining an ethical corporate culture: the core elements.Bus. Horiz,56,39-50.
  50. Shen, L.,Wang, H.,Xu, L.,Ma, X.,Chaudhry, S.,He, W.(2016).Identity Management based on PCA and SVM.Information Systems Frontiers,18,711-716.
  51. Ssegane, H.,Tollner, E. W.,Mohamoud, Y. M.,Rasmussen, T. C.,Dowd, J. F.(2012).Advances in variable selection methods I: causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships.Journal of Hydrology,438-439,16-25.
  52. Stern, H.,Chassidim, Y.,Zofi, M.(2006).Multi-agent visual area coverage using a new genetic algorithm selection scheme.European Journal of Operational Research,175(3),1890-1907.
  53. Thi Thu, H. L.,Manh Dung, T.(2018).The effect of internal control on asset misappropriation: the case of Vietnam.Business and Economic Horizons (BEH),14(4),941-953.
  54. Tinoco, M. H.,Wilson, N.(2013).Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables.International Review of Financial Analysis,30,394-419.
  55. Tong, S.,Koller, D.(2001).Support vector machine active learning with applications to text classification.Journal of Machine Learning Research,45-66.
  56. Tsai, C. F.(2009).Feature selection in bankruptcy prediction.Knowledge-Based Systems,22(2),120-127.
  57. Vafeiadis, T.,Dimitriou, N.,Ioannidis, D.,Wotherspoon, T.,Tinker, G.,Tzovaras, D.(2018).A framework for inspection of dies attachment on PCB utilizing machine learning techniques.Journal of Management Analytics,5(2),81-94.
  58. Wang, X.,Chen, X.,Bi, Z.(2015).Support vector machine and ROC curves for modeling of aircraft fuel consumption.Journal of Management Analytics,2(1),22-34.
  59. Yazdani, M.,Babagolzadeh, M.,Kazemitash, N.,Saberi, M.(2019).Reliability estimation using an integrated support vector regression-variable neighborhood search model.Journal of Industrial Information Integration,15,103-110.
  60. Yuan, R.,Li, Z.,Guan, X.,Xu, L.(2010).An SVM-based machine learning method for accurate Internet traffic classification.Information Systems Frontiers,12,149-156.
  61. Zager, L.,Malis, S. S.,Novak, A.(2016).The role and responsibility of auditors in prevention and detection of fraudulent financial reporting.Procedia Economics and Finance,39,693-700.
  62. Zhang, L.,Zhang, L.,Teng, W.,Chen, Y.(2013).Based on information fusion technique with data mining in the application of finance early-warning.Procedia Computer Science,17,695-703.
  63. Zhou, W.,Kapoor, G.(2011).Detecting evolutionary financial statement fraud.Decision Support Systems,50(3),570-575.