题名

Novel Cooperative Recommendation Model from Subjective and Objective Perspectives

并列篇名

整合主客視角的新穎協作推薦模型

作者

林育志(Yu Chih Lin);黃正魁(Tony, Cheng Kui Huang)

关键词

Cooperative recommendation system ; Association rule mining ; Similarity ; Subjective perspective ; Objective perspective ; 協作推薦系統 ; 關聯法則 ; 相似度 ; 主觀視角 ; 客觀視角

期刊名称

資訊管理學報

卷期/出版年月

29卷2期(2022 / 04 / 30)

页次

103 - 132

内容语文

英文

中文摘要

This study utilizes the idea of item-based collaborative filtering to propose a novel cooperative recommendation model. The model adopts the technique of association rule mining and the similarity computation algorithm to generate recommendations from subjective inquiries and objective rules. In addition, a user-experience questionnaire is conducted to measure the perceived usefulness, trust, and satisfaction after participants use the cooperative recommendation system. The experiment adopts the shares from the Taiwan Top50 Exchange Tracker Fund (ETF50) as recommendation items to collect our real-life dataset. According to the result, the novel cooperative recommendation model (system) presents higher perceived usefulness, trust, and satisfaction.

英文摘要

本研究利用項目為基礎的協同過濾想法,提出一種新穎的協作推薦模型。模型根據主觀查詢和客觀規則,透過關聯法則和相似度演算生成推薦結果。並於參與者使用協作推薦系統後,藉由用戶體驗問卷量測使用者對模型的感知有用性、信任度和滿意度。我們以台灣50成分股作為實驗標的來收集真實數據集。根據研究結果,新穎協作推薦模型(系統)呈現出更高的感知有用性、信任度和滿意度。

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Yuan, Y.,Huang, T.(2005).A matrix algorithm for mining association rules.Lecture Notes in Computer Science,3644,370-379.
    連結:
  2. Agarwal, R. C.,Aggarwaln, C. C.,Prasad, V. V.V.(2001).A tree projection algorithm for the generation of frequent itemsets.Journal of Parallel and Distributed Computing,61(3),350-371.
  3. Agrawal, R.,Faloutsos, C.,Swami, A.(1993).Efficient similarity search in sequence databases.Lecture Notes in Computer Science,730,69-84.
  4. Agrawal, R.,Imielinski, T.,Swami, A.(1993).Mining association rules between sets of items in large databases.Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data
  5. Agrawal, R.,Srikant, R.(1994).Fast algorithms for mining association rules.Proceedings of the 20th International Conference Very Large Data Bases
  6. Ahmad Wasfi, A. M.(1999).Collecting user access patterns for building user profiles and collaborative filtering.Proceedings of the 4th International Conference on Intelligent User Interfaces - IUI ’99
  7. Ainsbury, R. D.,Hussein, H. K. A.,Hinnant, M. C.,Lahham, M. M.,Ludin, S. L.,Putterman, D. S.,Shotton, F. R.,Tejada, W. M.(2000).Ainsbury, R. D., Hussein, H. K. A., Hinnant, M. C., Lahham, M. M., Ludin, S. L., Putterman, D. S., Shotton, F. R. & Tejada, W. M. (2000). Method and apparatus for performing data collection, interpretation, and analysis, in an information platform. In Google Patents..
  8. Altiparmak, F.,Ferhatosmanoglu, H.,Erdal, B.,Trost, D.(2006).Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases.IEEE Transactions on Information Technology in Biomedicine: a Publication of the IEEE Engineering in Medicine and Biology Society,10(2),254-263.
  9. Ashrafi, M. Z.,Taniar, D.,Smith, K.(2004).A new approach of eliminating redundant association rules.Lecture Notes in Computer Science,3180,465-474.
  10. Balabanovic, M.,Shoham, Y.(1997).Fab: Content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
  11. Baldwin, C. Y.,Woodard, C. J.(2008).Harvard Business School Finance Working PaperHarvard Business School Finance Working Paper,未出版
  12. Basu, C.,Hirsh, H.,Cohen, W.(1998).Recommendation as classification: using social and content-based information in recommendation.Proceedings of the 15th National Conference on Artificial Intelligence,Madison, WI:
  13. Bauer, J.,Nanopoulos, A.(2014).Recommender systems based on quantitative implicit customer feedback.Decision Support Systems,68,77-88.
  14. Berndt, D. J.,Clifford, J.(1994).Using dynamic time warping to find patterns in time series.Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining
  15. Billsus, D.,Pazzani, M. J.(1999).A hybrid user model for news story classification.Proceedings of the 7th International Conference on User Modeling, Banff, Canada,New York:
  16. Billsus, D.,Pazzani, M.J.(1998).Learning collaborative information filters.Proceedings of the 15th International Conference on Machine Learning
  17. Bishop C. M.(2011).Pattern Recognition and Machine Learning.Springer.
  18. Boudreau, K.(2010).Open platform strategies and innovation: granting access vs. devolving control.Management Science,56,1849-1872.
  19. Bozkaya, T.,Yazdani, N.,Ozsoyoglu, Z.(1997).Matching and indexing sequences of different lengths.Proceedings of the 6th International Conference on Information and Knowledge Management
  20. Breese, J. S.,Heckerman, D.,Kadie, C.(1998).Empirical analysis of predictive algorithms for collaborative filtering.Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
  21. Breiman, L.,Friedman, J.,Stone, C. J.,Olshen, R.A.(1984).Classification and regression trees.Chapman and Hall/CRC.
  22. Burke, R.(2002).Hybrid recommender systems: survey and experiments.User Modeling and User-Adapted Interaction,12(4),331-370.
  23. Burke, R. D.,Hammond, K. J.,Yound, B. C.(1997).The FindMe approach to assisted browsing.IEEE Expert,12(4),32-40.
  24. Cai, D.,He, X.,Wen, J.R.,Ma, W.Y.(2004).Block-level link analysis.Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
  25. Candès, E. J.,Recht, B.(2009).Exact matrix completion via convex optimization.Found Comput Math,9,717-772.
  26. Caruana, R.,Niculescu-Mizil, A.(2006).An empirical comparison of supervised learning algorithms.ICML ‘06: Proceedings of the 23rd International Conference on Machine Learning
  27. Chen, L.,Ng, R.(2004).On the marriage of Lp-norms and edit distance.Proceedings of the 30th VLDB Conference
  28. Cheung, D. W.,Han, J.,Ng, V. T.,Fu, A. W.,Fu, Y.(1996).A fast distributed algorithm for mining association rules.4th International Conference on Parallel and Distributed Information Systems,Miami Beach, FL, USA:
  29. Cheung, D. W.,Xiao, Y.(1998).Effect of data skewness in parallel mining of association rules.Lecture Notes in Computer Science,1394,48-60.
  30. Choa, Y. H.,Kimb, J. K.,Kim S. H.(2002).A personalized recommender system based on web usage mining and decision tree induction.Expert Systems with Applications,23,329-342.
  31. Chuang, K.,Chen, M.,Yang, W.(2005).Progressive sampling for association rules based on sampling error estimation.Lecture Notes in Computer Science,3518,505-515.
  32. Claypool, M.,Gokhale, A.,Miranda, T.,Murnikov, P.,Netes, D.,Sartin, M.(1999).Combining content-based and collaborative filters in an online newspaper.ACM SIGIR Workshop on Recommender Systems - Implementation and Evaluation
  33. Cotter, P.,Smyth, B.(2000).PTV: Intelligent personalized TV guides.Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence
  34. Das, A.,Ng, W.-K.,Woon, Y.-K.(2001).Rapid association rule mining.Proceedings of the 10th International Conference on Information and Knowledge Management
  35. Davis, F. D.(1989).Perceived usefulness, perceived ease of use, and user acceptance of information technology.MIS Quarterly,13(3),319-340.
  36. Deerwester, S.,Dumais, S. T.,Furnas, G. W.,Landauer, T. K.,Harshman, R.(1990).Indexing by latent semantic analysis.Journal of the American Society for Information Science,41(6),391-407.
  37. Ding, H.,Trajcevski, G.,Scheuermann, P. I.,Wang, X.,Keogh E. J.(2008).Querying and mining of time series data: experimental comparison of representations and distance measures.Proceedings of the VLDB Endowment,1542-1552.
  38. Do, T. D.,Hui, S. C.,Fong, A.(2003).Mining frequent itemsets with category-based constraints.Lecture Notes in Computer Science,2843,76-86.
  39. Faloutsos, C.,Jagadish, H. V.,Mendelzon, A. O.,Milo, T.(1997).A signature technique for similarity-based queries.Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171)
  40. Faloutsos, C.,Lin, K.(1995).Fastmap: A fast algorithm for indexing, datamining, and visualization of traditional and multimedia datasets.Proceedings of ACM-SIGMOD
  41. Faloutsos, C.,Ranganathan, M.,Manolopoulos, Y.(1994).Fast subsequence matching in time-series databases.ACM SIGMOD Record,23(2),419-429.
  42. Fraccascia, L.,Yazan, D. M.(2018).The role of online information-sharing platforms on the performance of industrial symbiosis networks.Resources, Conservation and Recycling,136,473-485.
  43. Friedman, N.,Geiger, D.,Goldszmidt, M.(1997).Bayesian network classifiers.Machine Learning,29(2-3),131-163.
  44. Goldberg, K.,Roeder, T.,Gupta, D.,Perkins, C.(2001).Eigentaste: A constant time collaborative filtering algorithm.Information Retrieval Journal,4(2),133-151.
  45. Han, J.,Pei, J.(2000).Mining frequent patterns by pattern-growth: methodology and implications.ACM SIGKDD Explorations,2(2),30-36.
  46. Herlocker, J. L.,Konstan, J. A.,Borchers, A.,Riedl, J.(1999).An algorithmic framework for performing collaborative filtering.Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
  47. Houtsma, M.,Swami, A.(1995).Set-oriented mining of association rules in relational databases.Proceedings of the 11th International Conference on Data Engineering,Taipei, Taiwan:
  48. Huang, C. K.,Li, C. J.(2018).Substitution association rule mining in the stock market with big data analysis.24th Cross Strait Conference of Information Management Development and Strategy,Hong Kong:
  49. Huang, T. C. K.(2013).Recommendations of closed consensus temporal patterns by group decision making.Knowledge-Based Systems,54,318-328.
  50. Huang, T. C. K.,Chen, Y. L.,Chen, M. C.(2016).A novel recommendation model with Google similarity.Decision Support Systems,89,17-27.
  51. Isinkaye, F.O.,Folajimi, Y.O.,Ojokoh, B.A.(2015).Recommendation systems: principles, methods, and evaluation.Egyptian Informatics Journal,16,261-273.
  52. ITIF. (October 12, 2018). ITIF technology explainer: what are digital platforms? Retrieved from https://itif.org/publications/2018/10/12/itif-technology-explainer-what-are-digital-platforms
  53. Jagadish, H. V.,Mendelzon, A. O.,Milo, T.(1995).Similarity-based queries.Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
  54. Jaroszewicz, S.,Simovici, D. A.(2002).Pruning redundant association rules using maximum entropy principle.Lecture Notes in Computer Science,2336,135-142.
  55. Keshavan, R. H.,Montanari, A.,Sewoong, O.(2010).Matrix completion from a few entries.IEEE Transactions on Information Theory,56(6),2980-2998.
  56. Kim, S. W.,Park, S.,Chu, W. W.(2001).An index-based approach for similarity search supporting time warping in large sequence databases.Proceedings -International Conference on Data Engineering
  57. Konstan, J. A.,Miller, B. N.,Maltz, D.,Herlocker, J. L.,Gordon, L. R.,Riedl, J.(1997).GroupLens: applying collaborative filtering to Usenet news.Communications of the ACM,40(3),77-87.
  58. Koren, Y.,Bell, R.,Volinsky, C.(2009).Matrix factorization techniques for recommender systems.IEEE Computer,42(8),30-37.
  59. Kotsiantis, S.,Kanellopoulos, D.(2006).Association rules mining: a recent overview.GESTS International Transactions on Computer Science and Engineering,32(1),71-82.
  60. Kużelewska, U.(2013).Advantages of information granulation in clustering algorithms.Communications in Computer and Information Science,271,131-145.
  61. Landauer, T.,Laham, D.,Foltz, P.(1998).Learning human-like knowledge by singular value decomposition: a progress report.Advances in Neural Information Processing Systems 10,Cambridge:
  62. Lang, K.(1995).NewsWeeder: Learning to filter Netnews.Proceedings of the 12th International Machine Learning Conference
  63. Larose, D. T.,Larose, C. D.(2014).Discovering knowledge in data: an introduction to data mining.Hoboken:John Wiley & Sons Inc..
  64. Lemire, D.,Maclachlan, A.(2005).Slope one predictors for online rating-based collaborative filtering.Proceedings of the 2005 SIAM International Conference on Data Mining
  65. Levenshtein, V. I.(1966).Binary codes capable of correcting deletions, insertions, and reversals.Soviet Physics Doklady,10(8),707-710.
  66. Li, Y.,Gopalan, R. P.(2004).Effective sampling for mining association rules.Lecture Notes in Computer Science,3339,391-401.
  67. Li, Y.-M.,Wu, C.-T.,Lai, C.-Y.(2013).A social recommender mechanism for e-commerce: combining similarity, trust, and relationship.Decision Support Systems,55(3),740-752.
  68. Liang, T. P.,Lai, H. J.,Ku, Y. C.(2006).Personalized content recommendation and user satisfaction: theoretical synthesis and empirical findings.Journal of Management Information Systems,23(3),45-70.
  69. Lika, B.,Kolomvatsos, K.,Hadjiefthymiades, S.(2014).Facing the cold start problem in recommender systems.Expert Systems with Applications,41(4-2),2065-2073.
  70. Linoff, G. S.,Berry, M. J. A.(2011).Data mining techniques: for marketing, sales, and customer relationship management.New York:Wiley Computer.
  71. Loh, Wei-Yin(2011).Classification and regression trees.Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,1,14-23.
  72. Lu, J.,Wu, D.,Mao, M.,Wang, W.,Zhang, G.(2015).Recommender system application developments: a survey.Decision Support Systems,74,12-32.
  73. Mannila, H.,Toivonen, H.,Verkamo, A. I.(1994).Efficient algorithms for discovering association rules.AAAI-94 Workshop on Knowledge Discovery in Databases
  74. Manning, A. M.,Keane, J. A.(2001).Data allocation algorithm for parallel association rule discovery.Lecture Notes in Computer Science,2035,413-420.
  75. Mcintyre, D. P.,Srinivasan, A.(2017).Networks, platforms, and strategy: emerging views and next steps.Strategic Management Journal,38,141-160.
  76. McSherry, D.(2004).Explaining the pros and cons of conclusions in CBR.Advances in Case-Based Reasoning. ECCBR 2004,Berlin, Heidelberg:
  77. Mobasher, B.,Jin, X.,Zhou, Y.(2004).Semantically enhanced collaborative filtering on the web.Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),3209,1-20.
  78. Mooney, R. J.,Roy, L.(1999).Content-based book recommending using learning for text categorization.Proceedings of the 5th ACM Conference on Digital Libraries
  79. Morgan, R. M.,Hunt, S. D.(1994).The commitment-trust theory of relationship marketing.Journal of Marketing,58(3),20-38.
  80. Moshfeghi, Y.,Piwowarski, B.,Jose, J. M.(2011).Handling data sparsity in collaborative filtering using emotion and semantic-based features.Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’11
  81. Najmul Islam, A. K. M.,Cenfetelli, R. T.,Benbasat, I.(2020).Organizational buyers’ assimilation of B2B platforms: effects of IT-enabled service functionality.The Journal of Strategic Information Systems,29(1),1-28.
  82. Pan, C.,Li, W.(2010).Research paper recommendation with topic analysis.International Conference on Computer Design and Applications (ICCDA 2010)
  83. Papagelis, M.,Plexousakis, D.(2005).Qualitative analysis of user-based and itembased prediction algorithms for recommendation agents.Engineering Applications of Artificial Intelligence,18(7),781-789.
  84. Park, D. H.,Kim, H. K.,Choi, I. Y.,Kim, J. K.(2012).A literature review and classification of recommender systems research.Expert Systems with Applications,39(11),10059-10072.
  85. Park, S. T.,Chu, W.(2009).Pairwise preference regression for cold-start recommendation.Proceedings of the 3rd ACM Conference on Recommender Systems - RecSys ’09
  86. Parthasarathy, S.(2002).Efficient progressive sampling for association rules.2002 IEEE International Conference on Data Mining, 2002. Proceedings
  87. Parthasarathy, S.,Zaki, M. J.,Ogihara, M.,Li, W.(2001).Parallel data mining for association rules on shared-memory systems.Knowledge and Information Systems,3,1-29.
  88. Pazzani, M. J.(1999).A framework for collaborative, content-based, and demographic filtering.Artificial intelligence review,5(6),393-408.
  89. Piatetsky, G.(2007).Interview with Simon Funk.ACM SIGKDD Explorations Newsletter,9(1),38-40.
  90. Resnick, P.,Iacovou, N.,Suchak, M.,Bergstrom, P.,Riedl, J.(1994).GroupLens: An open architecture for collaborative filtering of Netnews.Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work
  91. Sakurai, Y.,Yoshikawa, M.,Faloutsos, C.(2005).FTW: Fast similarity search under the time warping distance.Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
  92. Salton, G.,Buckley, C.(1988).Term-weighting approaches in automatic text retrieval.Information Processing and Management,24(5),513-523.
  93. Sarwar, B.,Karypis, G.,Konstan, J.,Reidl, J.(2001).Item-based collaborative filtering recommendation algorithms.Proceedings of the 10th International Conference on World Wide Web
  94. Schafer, J. B.,Frankowski, D.,Herlocker, J.,Sen, S.(2007).Collaborative filtering recommender systems.The Adaptive Web,Berlin Heidelberg (Germany):
  95. Schuster, A.,Wolff, R.(2001).Communication-Efficient distributed mining of association rules.Proceedings of the 2001 ACM SIGMOD Int’l. Conference on Management of Data,Santa Barbara, California:
  96. Smyth, B.,Cotter, P.(2000).A personalised TV listings service for the digital TV age.Knowledge-Based Systems,13(2-3),53-59.
  97. Standing, S.,Standing, C.,Love, P. E. D.(2010).A review of research on e-marketplaces 1997-2008.Decision Support Systems,49,41-51.
  98. Tang, P.,Turkia, M. P.(2006).Parallelizing frequent itemset mining with FP-trees.Computers and Their Applications
  99. Toivonen, H.(1996).Sampling large databases for association rules.Proceedings of the 22nd VLDB Conference,Mumbai (Bombay). India:
  100. Tsai, C. Y.,Shieh, Y. C.(2009).A change detection method for sequential patterns.Decision Support Systems,46,501-511.
  101. Vlachos, M.,Kollios, G.,Gunopulos, D.(2002).Discovering similar multidimensional trajectories.Proceedings 18th International Conference on Data Engineering
  102. Wang, C.,Tjortjis, C(2004).PRICES: An efficient algorithm for mining association rules.Lecture Notes in Computer Science,3177,352-358.
  103. Wang, J.,de Vries, A. P.,Reinders, M. J. T.(2006).Unifying user-based and item-based collaborative filtering approaches by similarity fusion.Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’06
  104. Wojciechowski, M.,Zakrzewicz, M.(2002).Dataset filtering techniques in constraint-based frequent pattern mining.Lecture Notes in Computer Science,2447,77-83.
  105. Yi, B. K.,Faloutsos, C.(2000).Fast time sequence indexing for arbitrary Lp norms.Proceedings of the 26th International Conference on Very Large Data Bases
  106. Yi, B. K.,Jagadish, H. V.,Faloutsos, C.(1998).Efficient retrieval of similar time sequences under time warping.Proceedings 14th International Conference on Data Engineering
  107. Zhang, S.,Yao, L.,Sun, A.,Tay, Y.(2018).Deep learning based recommender system: a survey and new perspectives.ACM Computing Surveys,1(1),1-35.