题名 |
改進值譜數之測驗能力值估算新模式 |
并列篇名 |
A Novel Algorithm to Estimate Examinee's Ability with Greater Spectrum Number |
DOI |
10.7108/PT.200412.0233 |
作者 |
陳桂霞(Guey-Shya Chen);鄭裕篤(Yu-Du Cheng);劉湘川(Hsiang-Chuan Liu) |
关键词 |
倒傳遞類神經網路 ; 試題反應理論 ; 點二相關係數鑑別指數 ; 多元計分模式 ; 值譜數 ; artificial neural network, back-propagation network ; item response theory ; point-biserial correlation item discrimination index ; multivariate logistic categorical response model ; spectrum number |
期刊名称 |
測驗學刊 |
卷期/出版年月 |
51卷2期(2004 / 12 / 01) |
页次 |
233 - 248 |
内容语文 |
繁體中文 |
中文摘要 |
本研究將「倒傳遞類神經網路」結合「多元計分模式」與「點二系列相關鑑別指數」運用在測驗能力估算上,提供一個新的測驗能力估算模式。再以電腦模擬大量的施測資料,針對試題數及樣本人數進行分析印證,並與BILOG-MG軟體作能力估算的精準度比較,類神經網路的估算模式能得到更精準的測驗能力估計值,尤其當題目數愈少時兩者差距愈顯著。運用多元計分模式,能區分同分考生之能力高低,且在能力值估算上本模式比BILOG-MG有較多的值譜數。 |
英文摘要 |
This research tries to combine the model of back-propagation neural network with the multivariate logistic categorical response model and point-biserial correlation item discrimination index to obtain more accurate estimated values of examinee's ability. We do some computer simulations for various item numbers and sample sizes to verify better performance of our proposed model by comparing the results estimated by BILOG-MG. And from the simulation results we also observe that the proposed approach has greater spectrum number than that of BILOG-MG. |
主题分类 |
社會科學 >
心理學 社會科學 > 教育學 |
参考文献 |
|