英文摘要
|
So far our testing models have not dealt with item response sequences with serial correlation. Hidden Markov Models (HMMs) are a frequently used tool for time series data. They are used in numerous applications. It can represent probability over sequences of observations. Using HMMs to analyze item response sequences with transition probability was considered by Hsiang-Chuan Liu in 2003. Unfortunately, They are not always adequate to treat the general item response sequences, since the observation symbol probability matrices and the state transition probability matrices of HMMs are both fixed. Hsiang-Chuan Liu (2004) proposed a set of generalized Hidden Markov Models (GHMMs) with varying observation symbol probability matrices and state transition probability matrices and gave appropriate methods for parameters estimation. Further, Hsiang-Chuan Liu (2005a) proposed the mixing parametric item response theory models based on GHMM Models. The abilities of examinee can also be analyzed by those mixing models. Hsiang-Chuan Liu (2005b) also proposed the mixing kernel smoothing nonparametric item response theory model (KN-IRT) based on GHMM Model. Those mixing models can analyze not only the abilities of examinee but also the ordering relations between the items or the item relational structure by connecting the Item Ordering Theory model (IOT) or the Item Relational Structure model (TRS). Some developments and applications of the new testing models are briefly reviewed in this paper.
|
参考文献
|
-
劉湘川(2004)。廣義隱藏式馬可夫模型應用於測驗分析之研究。測驗統計年刊,12,1-22。
連結:
-
劉湘川(2005)。基於GHMM之KN-IRT混合模式及其估計。測驗統計年刊,13(上),11-23。
連結:
-
劉湘川(2003)。核平滑化試題與選項分析模式之條件最大概似數值估計。測驗統計年刊,11,17-40。
連結:
-
劉湘川(2003)。高階相關比累進加權核平滑化試題選項分析綜合模式。測驗統計年刊,10,197-218。
連結:
-
Baldi, P.,Brunak, S.(1997).Bioinformatics: The Machine Learning Approach.Cambridge, MA:The MIT Press.
-
Bami, L. E.,Petrie, T.(1966).Statistical inference state Markov chains.Annals of the Institute of Statistical Mathematics,37,1554-1563.
-
Baum, L. E.,Petrie, T.,Soules, G.,Weiss, N.(1970).A maximization technique occuffing in the statistical analysis of probabilistic functions of Morkov chains.Ann. Math. Statist,41,164-171.
-
Bilmes, J. A.(1998).A Gentle Tutorial of the EM Algorithm and its Application to Parameter estimation for Gaussian Mixture and Hidden Markov models.International Computer Science Institute,97-021.
-
Elliott, R. J.,Aggour L.,Moore, J. B.(1995).Hidden Markov Models, Estimation and control.New York:Springer.
-
MacDonald, I. L.,Zucchini, W.(1997).Hidden markov and other models for discrete-valued time series.London:Chapman & Hall.
-
Rabinei, L. R.,Juang, B. H.(1986).An Introduction to Hidden Markov Model.IEEE ASSP Magazine,4-16.
-
Ramsay, J. O.(1991).Kernel smoothing approaches to nonparametric item characteristic curve estimation.Psychometrika,56,611-630.
-
Rost. J.(1990).Rasch models in latent classes: An integration of two approaches to item analysis.Applied Psychological Measurement,3,271-282.
-
Viterbi, A.(1967).Error bounds for convolutional codes and an asymptotically optimal decoding algorithm.IEEE Transactions on Information Theory,13,260-269.
-
劉湘川(2001)。核平滑化試題選項特徵曲線與選項關聯結構整合擴充模式。測驗統計年刊,9,1-18。
-
劉湘川(2001)。相關加權核平滑化無參數試題選項特徵曲線估計法及其IORS整合模式。第五屆華人社會心理與教育測驗學術研討會,台北市:
-
劉湘川(2002)。多重加權核平滑化試題選項分析模式及其轉化應用師範學院教育學術論文發表。嘉義市:國立嘉義大學。
-
劉湘川(2000)。點二系列相關試題鑑別指數之值譜分析及其在IRT上之應用。測驗統計年刊,8,1-20。
-
劉湘川、鄭弼文、郭伯臣、鄭雅云(2005)。基於廣義隱藏式馬可夫模型之測驗分析模式之參數估計蒙地卡羅模擬研究。「年國際管理與科技」學術研討會,斗六市:
-
劉湘川、鄭雅云、郭伯臣、鄭弼文(2005)。基於廣義隱藏式馬可夫模型之IRT混合模式及其應用。「年國際管理與科技」學術研討會,斗六市:
|