题名

一因子高層次試題反應理論模式之評估

并列篇名

An Evaluation of the One-Factor Hierarchical Item Response Theory Model

DOI

10.7108/PT.201209.0329

作者

郭伯臣(Bor-Chen Kuo);謝典佑(Tien-Yu Hsieh);吳慧珉(Huey-Min Wu);林佳樺(Chia-Hua Lin)

关键词

一因子高層次試題反應理論模式 ; 多向度試題反應理論模式 ; 單向度試題反應理論模式 ; multi-dimensional item response theory ; one-factor hierarchical item response theory model ; uni-dimensional item response theory

期刊名称

測驗學刊

卷期/出版年月

59卷3期(2012 / 09 / 01)

页次

329 - 348

内容语文

繁體中文

中文摘要

本研究主要是探討,當資料具備一因子高層次試題反應理論模式結構時,誤用單向度試題反應理論模式估計高層次量尺分數,或多向度試題反應理論模式估計次級量尺分數,對於參數估計所造成的影響。模擬研究考慮受試者樣本數、試題數、次級量尺間相關程度,以及題間與題內多向度測驗,結果顯示:1. 當資料具備一因子高層次試題反應理論模式結構時,一因子高層次試題反應理論模式於試題參數、高層次量尺分數與變異數的估計效能,優於單向度試題反應理論模式。2. 當資料具備一因子高層次試題反應理論模式結構時,一因子高層次試題反應理論模式於試題參數、次級量尺分數與變異數-共變異數矩陣的估計效能,近似於多向度試題反應理論模式。

英文摘要

In this study, some simulation experiments were conducted to evaluate how the abilities, regressions and item parameters are affected by means comparing the accuracy of one-factor hierarchical item response theory model to that of one-dimensional and multi-dimensional item response theory models. There were four different factors such as sample sizes, item lengths, correlation between domain abilities, and model specifications considered in this study. The results showed that:1. With hierarchical data structure, the accuracy of one-factor hierarchical item response theory model outperformed that of uni-dimensional item response theory model for estimating the variance of the overall ability, the overall ability, and item parameter.2. With hierarchical data structure, the accuracy of multi-dimensional item response theory model was similar to that of one-factor hierarchical item response theory model for estimating the variance-covariance between domain abilities, domain abilities, and item parameter.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. Adams, R. J.,Wilson, M.,Wang, W. C.(1997).The multidimensional random coefficients multinomial logit model.Applied Psychological Measurement,21,1-23.
  2. Baker, F. B.(2004).Item response theory: Parameter estimation techniques.New York, NY:Marcel Dekker.
  3. Brooks, S. P.,Gelman, A.(1998).General methods for monitoring convergence of iterative simulations.Journal of Computational and Graphical Statistics,7,343-455.
  4. de la Torre, J,Hong, H.(2010).Parameter estimation with small sample size: A higher-order IRT model approach.Applied Psychological Measurement,34(4),267-285.
  5. de la Torre, J,Song, H.(2009).Simultaneous estimation of overall and domain abilities: A higher-order IRT model approach.Applied Psychological Measurement,33(8),620-639.
  6. Gelman, A.,Carlin, J. B.,Stern, H. S.,Rubin, D. B.(2004).Bayesian data analysis.Boca Raton, FL:Chapman & Hill.
  7. Geman, S.,Geman, D.(1984).Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence,6,721-741.
  8. Hoskens, M.,De Boeck, P.(1997).A parametric model for local dependencies among test items.Psychological Methods,2,261-277.
  9. Huang, H. Y.(2009).Taipei, Taiwan,National Taiwan Normal University.
  10. Lunn, D. J.,Thomas, A. ,Best, N.,Spiegelhalter, D.(2000).WinBUGS: A Bayesian modelling framework: Concepts, structure, and extensibility.Statistics and Computing,10,325-337.
  11. Organisation for Economic Co-operation and Development=OECD(2005).,Paris, France:.
  12. Patz, R. J.,Junker, B. W.(1997).Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses.Pittsburgh, PA:Carnegie Mellon University, Department of Statistics.
  13. Patz, R. J.,Junker, B. W.(1999).A straightforward approach to Markov chain Monte Carlo methods for item response models.Journal of Educational and Behavioral Statistics,24,146-178.
  14. Rasch, G.(1980).Probabiliatic models for some intelligence and attainment tests.Chicago, IL:University of Chicago Press.
  15. Reise, S. P.,Moore, T. M.,Maydue-Olivares, A.(2011).Target rotations and assessing the impact of model violations on the parameters of unidimensional item response theory models.Educational and Psychological Measurement,71(4),684-711.
  16. Sheng, Y.,Wikle, C. K.(2008).Bayesian multidimensional IRT models with a hierarchical structure.Educational and Psychological Measurement,68(3),413-430.
  17. Wang, W.,Wilson, M.,Cheng, Y.(2000).Local dependence between latent traits when common stimuli are used.International Objective Measurement Workshop,New Orleans, LA:
  18. Wilson, M.,Adams, R. J.(1995).Rasch models for item bundles.Psychometrika,60,181-198.
  19. Wright, B. D.,Stone, M. H.(1979).Best test design.Chicago, IL:MESA Press.
被引用次数
  1. 凃柏原、吳俊賢(2018)。四個試題反應模式的整體能力與領域能力估計精確性之比較研究。教育學誌,39,87-151。