题名

Incorporating Response Time to Analyze Test Data with Mixture Structural Equation Modeling

并列篇名

利用結構方程混合模型分析具反應時間的測驗資料

作者

詹淑貞(Shu-Chen Chan);呂翠珊(Tsui-Shan Lu);蔡蓉青(Rung-Ching Tsai)

关键词

結構方程混合模型 ; Rasch模型 ; 反應時間 ; mixture structural equation model ; Rasch model ; response time

期刊名称

測驗學刊

卷期/出版年月

61卷4期(2014 / 12 / 01)

页次

463 - 488

内容语文

英文

中文摘要

過去的研究顯示,試題作答的反應時間可以幫助了解考生們不同的測驗作答行為,特別是考慮反應時間所建構的Rasch混合模型(MRM-RT),利用兩個潛在類別來刻劃及區辨快速猜測或真實作答之受試者,比起單純只考慮認真作答的受試者模型,更符合實際的測驗資料。本研究將此MRM-RT模型放在結構方程混合模型的架構下,同時對試題的反應時間及測驗作答反應的資料進行分析,如此一來可以很容易地增加MRM-RT模型中的潛在類別個數,並且對此模型做參數估計。由模擬結果顯示,MRM-RT在試題的參數估計及描述受試者的應試行為上,表現皆優於Rasch混合模型。也發現使用穩健標準誤之最大概似估計所花費的時間,遠少於使用蒙特卡羅馬爾可夫鏈的貝氏估計。因此,採用此架構之作法對研究者來說,將可以更容易地獲得MRM-RT的參數估計。

英文摘要

Item response time has been shown valuable in identifying different test behavior of the test takers. In particular, the mixture Rasch model with response time components (MRM-RT) has suggested that a two-class solution representing rapid-guessers and solution behavior examinees could empirically fit the test data better than a one-class solution. In this study, we embed such a simultaneous analysis of item responses and response time into the mixture structural equation model framework, which in turn facilitates the estimation of the model with another additional class. Our simulation results indicate that the MRM-RT outperforms the mixture Rasch model in yielding more accurate item parameter estimates as well as describing better the test-taking behavior. The study shows that maximum likelihood estimation with robust standard errors takes much less time than using Monte Carlo Markov Chains for Bayesian estimation. Therefore, the estimation of MRM-RT is more accessible to researchers.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. DeMars, C. E.,Wise, S. L.(2010).Can differential rapid-guessing behavior lead to differential item functioning.International Journal of Testing,10(3),207-229.
  2. Ferrando, P. J.,Lorenzo-Seva, U.(2007).An item response theory model for incorporating response time data in binary personality items.Applied Psychological Measurement,31(6),525-543.
  3. Klein Entink, R. H.,Fox, J. P.,Hornke, L. F.,Kuhn, J. T.(2009).Evaluating cognitive theory: A joint modeling approach using responses and response times.Psychological Methods,14(1),54-75.
  4. Lee, Y. H.,Chen, H.(2011).A review of recent response-time analysis in educational testing.Psychological Test and Assessment Modeling,53(3),359-379.
  5. Loeys, T.,Rosseel, Y.,Baten, K.(2011).A joint modeling approach for reaction time and accuracy in psycholinguistic experiments.Psychometrika,76(3),487-503.
  6. Maij-de Meij, A. M.,Kelderman, H.,van der Flier, H.(2010).Improvement in detection of differential item functioning using a mixture item response theory model.Multivariate Behavioral Research,45(6),975-999.
  7. McIntyre, H. H.(2011).Investigating response styles in self-report personality data via a joint structural equation mixture modeling of item responses and response times.Personality and Individual Differences,50(5),597-602.
  8. Meyer, J. P.(2010).A mixture Rasch model with item response time components.Applied Psychological Measurement,34(7),521-538.
  9. Millsap, R. E.,Tein, J.-Y.(2004).Assessing factorial invariance in ordered-categorical measures.Multivariate Behavioral Research,39(3),479-515.
  10. Muthén, L. K.,Muthén, B. O.(1998).Mplus: User's guide.Los Angeles, CA:Muthen & Muthen.
  11. Oshima, T. C.(1994).The effect of speededness on parameter estimation in item response theory.Journal of Educational Measurement,31(3),200-219.
  12. Ranger, J.,Kuhn, J. T.(2012).Improving item response theory model calibration by considering response times in psychological tests.Applied Psychological Measurement,36(3),214-231.
  13. Rost, J.(1990).Rasch models in latent classes: An integration of two approaches to item analysis.Applied Psychological Measurement,14(3),271-282.
  14. Schnipke, D. L.,Scrams, D. J.(1997).Modeling item response times with a two-state mixture model: A new method of measuring speededness.Journal of Educational Measurement,34(3),213-232.
  15. van der Linden, W. J.(2007).A hierarchical framework for modeling speed and accuracy on test items.Psychometrika,72(3),287-308.
  16. van der Linden, W. J.(2006).A lognormal model for response times on test items.Journal of Educational and Behavioral Statistics,31(2),181-204.
  17. Wang, C.,Fan, Z.,Chang, H.,Douglas, J.(2013).A semiparametric model for jointly analyzing response times and accuracy in computerized testing.Journal of Educational and Behavioral Statistics,38(4),381-417.
  18. Wang, T.,Hanson, B. A.(2005).Development and calibration of an item response model that incorporates response time.Applied Psychological Measurement,29(5),323-339.
  19. Wise, S. L.,DeMars, C. E.(2006).An application of item response time: The effort-moderated IRT model.Journal of Educational Measurement,43(1),19-38.
  20. Wise, S. L.,Kong, X. J.(2005).Response time effort: A new measure of examinee motivation in computer-based tests.Applied Measurement in Education,18(2),163-183.
被引用次数
  1. Tsai, Rung-Ching,Lu, Tsui-Shan,Lin, Ke-Chian(2018).Accounting for Careless Responding in Survey Questionnaires with a Bogus Item and Response Time.測驗學刊,65(4),439-463.