题名

認知診斷模式之理論與實務

并列篇名

Cognitive Diagnostic Model-Theory and Practice

作者

吳慧珉(Huey-Min Wu);鄭俊彥(Chun-Yen Cheng);施淑娟(Shu-Chuan Shih)

关键词

Q矩陣 ; 分數加減 ; 無參數 ; 認知診斷模式 ; adding and subtracting fractions ; cognitive diagnostic model ; non-parametric ; Q-matrix

期刊名称

測驗學刊

卷期/出版年月

62卷4期(2015 / 12 / 01)

页次

303 - 328

内容语文

繁體中文

中文摘要

本研究介紹認知診斷模式之理論與實例分析。參數型認知診斷模式有明確的參數定義,可描述試題特性或認知屬性特性,但估計演算法則複雜且須考慮模式適配與樣本大小之問題。無參數型認知診斷模式透過距離與加權,估計學生認知屬性組型,理論簡單易懂,沒有樣本大小之限制,但無法呈現試題之特性,應用較受限制。目前多數的研究聚焦於理論的探討與模擬研究,理論須落實於實務方能有用,本研究以實例「分數的加減」作為範例,探討認知診斷模式於實務分析之成效。在與專家的一致性比較方面,參數型DINA、R-RUM與無參數型Panelized的加權具有良好的一致性。教師可根據認知屬性的分布率,了解學生的學習成效,學生能根據診斷的結果,得到詳細的回饋。文末對實務應用提出Q矩陣設計、題目的編製、模式分析之建議。

英文摘要

Cognitive diagnostic models are introduced in this paper. The “Adding and Subtracting Fractions” unit for 4th grade math was used as an example. Parametric cognitively diagnostic models utilize parameters to define test questions or attribute characteristics therefore users can easily master the features of the questions. However, parametric cognitively diagnostic models also have limitations such as the parameter estimation algorithm is very complex, and issue such as goodness-of-fit and sample size require careful evaluation. Non-parametric cognitively diagnostic models model which overcomes issues with goodness-of-fit and sample size, and this model is capable of estimating the pattern of the attribute profile of the examinees by using a simple distance algorithm. However, application of this model is rather restricted due to the lack of parameters to explain the characteristics of its test questions. Most studies, using either parametric or non-parametric cognitively diagnostic models, focus on exploring simulation experiments and rarely examine empirical data. Theoretical models, however, need to be implemented in actual situations to realize their utility. Therefore, this study investigates the effectiveness of parametric and non-parametric cognitive diagnostic models in empirical data analysis. Using the experts’ decision as criteria, DINA, RRUM, and weighted panelized models represented good consistency with experts’ decision. Cognitively diagnostic models can provide teachers and students with detailed assessment information. The suggestions related to Q-matrix, item developing, and model fitting in practical settings are provided.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. Templin, J. L., Henson, R. A., Templin, S. E., & Roussos L. (2004). Robustness of unidi-mensional hierarchical modeling of discrete attribute association in cognitive diag-nosis models. Unpublished ETS Project Report, Princeton, NJ.
  2. Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2015). CDM: Cognitive diagnosis modeling. Retrieved from https://cran.r-project.org/web/packages/CDM/
  3. Zheng, Y., Chiu, C.-Y., & Douglas, J. A. (2015). NPCD: Nonparametric methods for cog-nitive diagnosis. Retrieved from https://cran.r-project.org/web/packages/NPCD/in-dex.html
  4. Bradshaw, L.,Izsák, A.,Templin, J.,Jacobson, E.(2014).Diagnosing teachers' understanding of rational number: Building a multidimensional test within the diagnostic classification framework.Educational Measurement: Issues and Practice,33(1),2-14.
  5. Burnham, K. P.,Anderson, D. R.(2002).Model selection and multimodel inference: A practical information-theoretic approach.New York, NY:Springer.
  6. Chiu, C. Y.(2013).Statistical refinement of the Q-matrix in cognitive diagnosis.Applied Psychological Measurement,37(8),598-618.
  7. Chiu, C. Y.,Douglas, J.(2013).A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns.Journal of Classification,30,225-230.
  8. de la Torre, J.(2008).An empirically-based method of Q-matrix validation for the DINA model: Development and applications.Journal of Educational Measurement,45,343-362.
  9. de la Torre, J.(2009).DINA model and parameter estimation: A didactic.Journal of Educational and Behavioral Statistics,34(1),115-130.
  10. de la Torre, J.(2009).A cognitive diagnosis model for cognitively based multiple-choice options.Applied Psychological Measurement,33(3),163-183.
  11. de la Torre, J.(2011).The generalized DINA model framework.Psychometrika,76,179-199.
  12. de la Torre, J.,Douglas, J.(2004).Higher-order latent trait models for cognitive diagnosis.Psychometrika,69(3),333-353.
  13. de la Torre, J.,Karelitz T. M.(2009).Impact of diagnosticity on the adequacy of models for cognitive diagnosis under a linear attribute structure: A simulation study.Journal of Educational Measurement,46,450-469.
  14. de la Torre, J.,Minchen, N.(2014).Cognitively diagnostic assessments and the cognitive diagnosis model framework.Psicología Educativa,20(2),89-97.
  15. DiBello, L. V.,Stout, W. F.,Roussos, L. A.(1995).Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques.Cognitively diagnostic assessment,Hillsdale, NJ:
  16. Gierl, M.,Cui, Y.,Zhou, J.(2009).Reliability and attribute-based scoring in cognitive diagnostic assessment.Journal of Educational Measurement,46(3),293-313.
  17. Hartz, S.(2002).Urbana-Champaign, IL,University of Illinois.
  18. Henson, R. A.,Douglas, J.(2005).Test construction for cognitive diagnosis.Applied Psychological Measurement,29(4),262-277.
  19. Henson, R. A.,Templin, J. L.,Willse, J. T.(2009).Defining a family of cognitive diagnosis models using log-linear models with latent variables.Psychometrika,4(2),191-210.
  20. Henson, R.,Roussos, L.,Douglas, J.,He, X.(2008).Cognitive diagnostic attribute level discrimination indices.Applied Psychological Measurement,32(4),275-288.
  21. Hou, L.,de la Torre, J.,Nandakumar, R.(2014).Differential item functioning assessment in cognitive diagnostic modeling: Application of the wald test to investigate DIF in the DINA model.Journal of Educational Measurement,51(1),98-125.
  22. Huebner, A.(2010).An overview of recent developments in cognitive diagnostic computer adaptive assessments.Practical Assessment, Research & Evaluation,15(3),1-7.
  23. Junker, B. W.,Sijtsma, K.(2001).Cognitive assessment models with few assumptions, and connections with nonpara-metric item response theory.Applied Psychological Measurement,25,258-272.
  24. Li, X.,Wang, W.-C.(2015).Assessment of differential item functioning under cognitive diagnosis models: The DINA model example.Journal of Educational Measurement,52(1),28-54.
  25. Madison, M.,Bradshaw, L.(2015).The effects of Q-matrix design on classification ac-curacy in the log-linear cognitive diagnosis model.Educational and Psychological Measurement,75(3),491-511.
  26. Maris, E.(1999).Estimating multiple classification latent class models.Psychometrika,64(2),187-212.
  27. Tatsuoka, K. K.(1985).A probabilistic model for diagnosing misconceptions in the pattern classification approach.Journal of Educational Statistics,12,55-73.
  28. Templin, J. L.,Hoffman, L.(2013).Obtaining diagnostic classification model estimates using Mplus.Educational Measurement: Issues and Practice,32(2),37-50.
  29. Templin, J.,Henson, R.(2006).Measurement of psychological disorders using cognitive diagnosis models.Psychological Methods,11,287-305.
  30. von Davier, M.(2014).The DINA model as a constrained general diagnostic model: Two variants of a model equivalency.British Journal of Mathematical and Statistical Psychology,67,49-71.
  31. Wang, C.,Zheng, C.,Chang, H.-H.(2014).An enhanced approach to combine item re-sponse theory with cognitive diagnosis in adaptive testing.Journal of Educational Measurement,51(4),358-380.
  32. 任中瑜(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
  33. 江培銘(2015)。博士論文(博士論文)。臺南市,國立臺南大學。
  34. 胡瓊文(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
  35. 張富玲(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
  36. 陳又維(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
  37. 楊雅惠(2015)。博士論文(博士論文)。臺南市,國立臺南大學。
  38. 劉又銘(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
  39. 閻承楙(2015)。碩士論文(碩士論文)。臺中市,國立臺中教育大學。
被引用次数
  1. 曾建銘,邱怡靜,吳昭容(2023)。三至八年級學生數學文字題的表徵轉換與等價能力。臺灣數學教育期刊,10(2),1-25。
  2. 李政軒(2016)。無參數加權認知診斷模式。測驗學刊,63(2),133-152。
  3. 謝佩鈞,劉志勇,李政軒(2020)。適用於小班教學現場之部分連結神經網路認知診斷模式。測驗學刊,67(2),145-166。