题名

Rasch-ZINB及其相關模式在計數資料上之應用

并列篇名

Rasch-ZINB Modeling for Testing Count Data

作者

洪來發(Lai-Fa Hung)

关键词

負二項迴歸模式 ; 試題反應理論 ; 過度離散 ; 零膨脹迴歸模式 ; item response theory ; negative binomial regression model ; over-dispersion ; zero-inflated regression model

期刊名称

測驗學刊

卷期/出版年月

63卷1期(2016 / 03 / 01)

页次

31 - 57

内容语文

繁體中文

中文摘要

在統計分析方法中,計數模式(例如:Poisson Regression Model、Negative Binomial Regression Model、Zero-inflated Regression Model)已被廣泛應用於心理學、管理學,以及其他社會科學等領域。不過,國內相關研究一直未將現代測驗理論之試題反應理論(Item Response Theory, IRT)模式與這些計數模式相結合,也就是未能以IRT的觀點:受試者潛在特質和試題難度,對於計數資料過度離散(Over-dispersion)或零膨脹(Zero-inflated)等異常現象提出解釋與處理。因此,本研究結合Rasch模式與計數模式提出Rasch-ZINB迴歸模式、Rasch-ZIG迴歸模式,以及Rasch-ZIP迴歸模式,並以某學科考試結果做為模式分析之實例。整體而言,本研究提出的結合模式,針對資料異常現象,可以藉由受試者潛在特質和試題難易度加以解釋。最後,進行模擬分析以更確認研究結果的可信度,並提出未來研究的一些建議。

英文摘要

Count data models (for example, Poisson regression model, negative binomial regression model, and zero-inflated regression model) have been widely applied in psychology, management and other social science fields. However, related studies in Taiwan have been failed to make connection between item response theory (IRT) and count data models which means those studies can't propose explanation from IRT approaches under the over-dispersion and zero-inflated count data. As a result, this study integrate Rasch model with count data model in order to propose a Rasch-ZINB regression model, Rasch-ZIG regression model, and Rasch-ZIP regression model. Various statistical tests for model evaluation are illustrated through an example of statistic testing. Overall, the integration model proposed in this study can make further explanations on data's skew phenomenon by means of item psychmetric features and individual traits. Finally, some suggestions for future research are provided.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. 林月仙、曾進興、吳裕益(2011)。「中文色塊測驗」之Rasch 模式分析。測驗學刊,58(2),343-365。
    連結:
  2. (2001).Econometrics.
  3. Akaike, H.(1974).A new look at the statistical model identification.IEEE Transactions on Automatic Control,19,716-723.
  4. Akaike, H.(1973).Information theory and an extension of the maximum likelihood principle.Second international symposium on information theory,Budapest, Hungary:
  5. Bonate, P. L.(2006).Pharmacokinetic-pharmacodynamic modeling and simulation.New York, NY:Springer Verlag.
  6. Branscum, A.,Hanson, T. E.(2010).Bayesian ideas and data analysis: An introduction for scientists and statisticians.Boca Raton, FL:CRC Press.
  7. Cameron, A. C.,Trivedi, P. K.(1998).Regression analysis of count data.NewYork, NY:Cambridge University Press.
  8. Dietz, E.,Bohning, D.(2000).On estimation of the Poisson parameter in zero-modified Poisson models.Computational Statistics & Data Analysis,34(4),441-459.
  9. Gaver, D. P.,O'Muircheartaigh, I. G.(1987).Robust Empirical Bayes analyses of event rates.Technometrics,29(1),1-15.
  10. Greene, W. H.(2002).Econometric analysis.Upper Saddle River, NJ:Prentice-Hall.
  11. Gupta, P.,Gupta, R.,Tripathi, R.(1996).Analysis of zero-adjusted count data.Computational Statistics and Data Analysis,23,207-218.
  12. Hall, D. B.(2000).Zero-inflated Poisson and binomial regression with random effects: A case study.Biometrics,56,1030-1039.
  13. Heilbron, D. C.(1994).Zero-altered and other regression models for count data with added zeros.Biometrical Journal,36,531-547.
  14. Hung, L. F.(2012).A negative binomial regression model for accuracy tests.Applied Psychological Measurement,36,88-103.
  15. Jansen, M. G. H.(2007).Testing for local dependence in Rasch's multiplicative gamma model for speed tests.Journal of Educational and Behavioral Statistics,32,24-38.
  16. Jansen, M. G. H.(2003).Estimating the parameters of a structural model for the latent traits in Rasch's model for speed tests.Applied Psychological Measurement,27,138-151.
  17. Kery, M.,Royle, J. A.,Schmid, H.(2005).Modeling avian abundance from replicated counts using binomial mixture models.Ecological Applications,15(4),1450-1461.
  18. Lambert, D.(1992).Zero-inflated Poisson regression with an application to defects in manufacturing.Technometrics,34,1-14.
  19. Lawless, J. F.(1987).Negative binomial and mixed Poisson regression.Canadian Journal of Statistics,15,171-181.
  20. Liu, H.,Powers, D. A.(2007).Growth curve models for zero-inflated count data: An empirical application to smoking behavior.Structural Equation Modeling,14(2),247-279.
  21. Liu, W. S.,Cela, J.(2008).Count data models in SAS.SAS 2008 Global Forum
  22. Lord, F. M.,Novick, M. R.(1968).Statistical theories of mental test scores.Reading, MA:Addison-Wesley.
  23. Mislevy, R. J.(1984).Estimating latent distribution.Psychometrika,49,359-381.
  24. Mullahy, J.(1986).Specification and testing of some modified count data models.Journal of Econometrics,33,341-365.
  25. Pinheiro, J. C.,Bates, D. M.(1995).Approximations to the log-likelihood function in the nonlinear mixed-effects model.Journal of Computational and Graphical Statistics,4,12-35.
  26. Rasch, G.(1980).Probabilistic models for some intelligence and attainment tests.Chicago, IL:University of Chicago Press.
  27. Ridout, M.,Demetrio, C.,Hinde, J.(1998).Models for count data with many zeros.Paper presented at the International Biometric Conference,Cape Town, South Africa:
  28. Royle, J. A.(2004).N-mixture models for estimating population size from spatially replicated counts.Biometrics,60(1),108-115.
  29. Schwarz, G.(1978).Estimating the dimension of a model.The Annals of Statistics,6,461-464.
  30. Verhelst, N. D.,Eggen, T. J. H. M.(1989).Psychometrische en statistische aspecten van peilingsonderzoek.Arnhem, The Netherlands:Cito.
  31. Wang, L.(2010).IRT-ZIP modeling for multivariate zero-inflated count data.Journal of Educational and Behavioral Statistics,35,671-692.
  32. Wenger, S. J.,Freeman, M. C.(2008).Estimating species occurrence, abundance, and detection probability using zero-inflated distributions.Ecology,89,2953-2959.
  33. Winkelmann, R.,Zimmermann, K. F.(1995).Recent developments in count data modelling: Theory and application.Journal of Economic Surveys,9(1),1-24.
  34. Wolfinger, R. D.(1999).Fitting nonlinear mixed models with the new NLMIXED procedure.Proceedings of the 24th Annual SAS Users Group International Conference (SUGI 24),Cary, NC: