题名

無參數加權認知診斷模式

并列篇名

A Nonparametric Weighted Cognitive Diagnosis Model

作者

李政軒(Cheng-Hsuan Li)

关键词

DINA ; 分數乘法 ; 加權中心 ; 無參數認知診斷模式 ; 認知診斷模式 ; cognitive diagnosis models ; fraction multiplication ; nonparametric CDM ; DINA ; weighted mean

期刊名称

測驗學刊

卷期/出版年月

63卷2期(2016 / 06 / 01)

页次

133 - 151

内容语文

繁體中文

中文摘要

認知診斷模式可以用來了解受試者在技能或概念上的精熟與否,近年來也已經被應用到不同領域中。其中,無參數認知診斷模式可透過「觀察作答反應」與「理想作答反應」之間的距離,搭配最近鄰分類器,來決定受試者的認知反應組型(技能具備與否)。因為無參數認知診斷模式不需要估計參數,故其適用於小樣本,模式判別所需要的時間也非常短暫。但是無參數認知診斷模式並未考慮到受試者在作答時可能會疏忽答錯或猜測答對,僅僅比對觀察作答反應與理想作答反應可能會受到疏忽或猜測影響,造成誤判受試者的認知反應組型。故本研究提出「無參數加權認知診斷模式」,利用疏忽權重與猜測權重,搭配理想作答反應,計算出加權中心。最後,再比對「觀察作答反應」與「加權中心的距離」來決定受試者的認知反應組型。模擬資料結果顯示,在受試者樣本數較少的情況下,無參數加權認知診斷模式的估計優於無參數認知診斷模式與DINA(Deterministic Input, Noisy “And”Gate Model)模式,特別是整體辨識率的一致性。透過「分數乘法」實證資料也驗證,無參數加權認知診斷模式可以提供較準確的認知反應組型估計,也更適用於目前小班制的教學現場。

英文摘要

Cognitive Diagnosis Models (CDMs) can help teachers or researchers to understand the skills that have been mastered or those have not. Hence, some models have been applied to many areas recently. A nonparametric CDM (NCDM) was proposed to estimate the attribute profile vectors of examinees by the nearest neighborhood classifier through the distances from the observed responses to the ideal responses. Moreover, NCDM does not require the parameter estimation and is more appropriate to the small sample size problem than parametric CDMs such as DINA (Deterministic Input, Noisy "And" Gate Model) model. In addition, it costs only a few CPU times for estimating examinees’ attribute profile vectors by applying NCDM. However, observed responses of examinees on an item are influenced by the slipping or guessing of examinees. Furthermore, NCDM does not take them into account. In this study, a nonparametric weighted CDM (NWCDM) was proposed, and it uses weighted means based on the slipping and guessing weights instead of the ideal responses of NCDM. The estimated attribute profile vectors of examinees are classified by the nearest neighborhood classifier through the distances from the observed responses to the weighted means. From the experimental results of simulated data sets, NWCDM outperforms than NCDM and DINA on estimating attribute profile vectors when the sample size is small. According to the results on a real data set, NWCDM can provide more accurate estimations, and is more suitable for recently small class teaching.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. 吳慧珉、鄭俊彥、施淑娟(2015)。認知診斷模式之理論與實務。測驗學刊,62,303-328。
    連結:
  2. Bradshaw, L.,Izsák, A.,Templin, J.,Jacobson, E.(2014).Diagnosing teachers' understanding of rational number: Building a multidimensional test within the diagnostic classification framework.Educational Measurement: Issues and Practice,33(1),2-14.
  3. Chiu, C. Y.(2013).Statistical refinement of the Q-matrix in cognitive diagnosis.Applied Psychological Measurement,37(8),598-618.
  4. Chiu, C.-Y.,Douglas, J.(2013).A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns.Journal of Classification,30,225-230.
  5. de la Torre, J.(2009).DINA model and parameter estimation: A didactic.Journal of Educational and Behavioral Statistics,34(1),115-130.
  6. de la Torre, J.(2011).The generalized DINA model framework.Psychometrika,76,179-199.
  7. de la Torre, J.(2009).A cognitive diagnosis model for cognitively based multiple-choice options.Applied Psychological Measurement,33(3),163-183.
  8. de la Torre, J.,van der Ark, L. A.,Rossi, G.(2015).Analysis of clinical data from cognitive diagnosis modeling framework.Measurement and Evaluation in Counseling and Development,1-16.
  9. Huebner, A.(2010).An overview of recent developments in cognitive diagnostic computer adaptive assessments.Practical Assessment, Research & Evaluation,15(3),1-7.
  10. Huo, Y.,de la Torre, J.(2014).Estimating a cognitive diagnostic model for multiple strategies via the EM algorithm.Applied Psychological Measurement,1-24.
  11. Jaeger, J.,Tatsuoka, C.,Berns, S.,Varadi, F.(2006).Distinguishing neurocognitive functions using partially ordered classification models.Schizophrenia Bulletin,32,679-691.
  12. Junker, B. W.,Sijtsma, K.(2001).Cognitive assessment models with few assumptions, and connections with nonpara-metric item response theory.Applied Psychological Measurement,25,258-272.
  13. Tatsuoka, C.(2002).Data-analytic methods for latent partially ordered classification models.Journal of the Royal Statistical Society Series C (Applied Statistics),51,337-350.
  14. Tatsuoka, K. K.(1985).A probabilistic model for diagnosing misconceptions in the pattern classification approach.Journal of Educational Statistics,12,55-73.
  15. Templin, J. L.,Henson, R. A.(2006).Measurement of psychological disorders using cognitive diagnosis models.Psychological Methods,11,287-305.
  16. Templin, J. L.,Hoffman, L.(2013).Obtaining diagnostic classification model estimates using Mplus.Educational Measurement: Issues and Practice,32(2),37-50.
  17. Theodoridis, S.,Koutroumbas, K.(2009).Pattern recognition.Burlington, MA:Elsevier.
  18. Yang, C.-W.,Kuo, B.-C.,Liao, C.-H.(2011).A HO-IRT based diagnostic assessment system with constructed response items.Turkish Online Journal of Educational Technology-TOJET,10(4),46-51.
  19. 李國家、劉曼麗(2012)。探討國小五年級數學低成就學生在分數部分的迷思概念:以異分母分數的比較與加減為例。科學教育月刊,354,30-43。
  20. 林宏憲(2012)。碩士論文(碩士論文)。臺中市,亞洲大學。
  21. 黃依琳(2015)。碩士論文(碩士論文)。臺南市,國立臺南大學。
被引用次数
  1. 吳肇銘,王宇廷(2023)。適性化測驗聊天機器人之設計與成效研究-以Java程式設計課程為例。商管科技季刊,24(3),305-332。
  2. 謝佩鈞,劉志勇,李政軒(2020)。適用於小班教學現場之部分連結神經網路認知診斷模式。測驗學刊,67(2),145-166。