题名

應用模糊化Stulz模型於彩虹選擇權之評價

并列篇名

Pricing Rainbow Options Based on the Fuzzy Pattern of Stulz Formula

DOI

10.29963/TOJEB.200512.0002

作者

李沃牆(Wo-Chiang Lee);黃淑菁(Shu-Ching Huang)

关键词

彩虹選擇權 ; 準蒙地卡羅法 ; Sobol低差異序列 ; MGARCH ; 模糊理論 ; Rainbow Option ; Quasi-Monte Carlo Method ; MGARCH ; Fuzzy Theory.

期刊名称

真理財經學報

卷期/出版年月

13期(2005 / 12 / 01)

页次

23 - 42

内容语文

繁體中文

中文摘要

本文挑選金融類、傳產類、電子類及混合類等四種組合來設計兩資產彩虹選擇權。根據過去學者研究之結果,以準蒙地卡羅法(Sobol低差異序列)模擬標的資產價格,再以MGARCH模型估計波動率,又採用移動相關係數,代入Stulz評價模型,如此便可得到彩虹選擇權的理論價格。接著,藉由模糊化標的資產價格、波動率、相關係數以及距到期期間,創新建立模糊化Stulz評價模型。並檢定出該模型與傳統Stulz模型之評價結果有顯著差異,表示模糊化Stulz評價模型可用於彩虹選擇權之評價。

英文摘要

In this article, we design four kinds of two-asset rainbow option, namely finance, conventional industries, electronic, mixed finance with electronic rainbow option respectively. In our empirical study, we use Quasi Monte Carlo Method for the simulation of underlying asset price. Additionally, we utilize MGARCH model for estimating volatility and put the moving correlation coefficient into pricing model. Then, we may obtain rainbow option's theory price. Furthermore, we consider the fuzzy stock price, fuzzy volatility, fuzzy correlation coefficient and fuzzy maturity as input variables. Then, the fuzzy pattern of Stulz formula is proposed in this paper Empirical result shows that the Fuzzy-Stulz Model can be applied in rainbow option pricing.

主题分类 社會科學 > 經濟學
参考文献
  1. Acworth, P.,M. Broadie,P. Glasserman(1996).A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing.Working paper.
  2. Black, F.,M. Scholes(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81,637-654.
  3. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,31,307-327.
  4. Bollerslev, T.,R. F. Engle,J. M. Wooldridge(1988).A Capital Asset Pricing Model with Time-Varying Covariance.Journal of Political Economy,96,116-131.
  5. Engle, R. F.,K. F. Kroner(1995).Multivariate Simultaneous Generalized ARCH.Econometric Theory,11,116-131.
  6. Gibson M. S.,B. H. Boyer(1998).Evaluating Forecasts of Correlation Using Option Pricing.Board of Governors of the Federal Reserve System International Finance Discussion Paper
  7. Hans N.,E. Bystrom(2001).Working paper.Lund, Sweden:Department of Economics, Lund University.
  8. Johnson, H.(1987).Options on the Maximum or Minimum of Several Assets.Journal of Financial and Quantitative Analysis,22,277-283.
  9. Levy, G.(2002).Multi-asset Derivative Pricing Using Quasi-Random Numbers and Monte Carlo Simulation.NAG paper.
  10. Margrabe, W.(1978).The Value of an Option to Exchange One Asset to Another.Journal of Finance,117-186.
  11. Moro, B.(1995).The Full Monte.
  12. Rubinstein, M.(1991).Somewhere Over the Rainbow.
  13. Rubinstein, M.(1994).Return to Oz.
  14. Sobol, I. M.(1967).On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals.U.S.S.R. Computational Mathematics and Mathematical Physics,7,86-112.
  15. Stulz, R. M.(1982).Options on the Minimum or the Maximum of Two Risky Assets: Analysis and Applications.Journal of Financial Economics,161-185.
  16. Topper, J.(2001).Worst Case Pricing of Rainbow Options.Discussion Paper.
  17. Wu, H. C.(2004).Pricing European Options Based on the Fuzzy Pattern of Black-Scholes Formula.Computers and Operations Research,31(7),1069-1081.
  18. Yager, R. R.(1984).A Procedure for Ordering Fuzzy Subsets of the Unit Interval.Information Science,24,143-161.
  19. Zadeh, L. A.(1965).Fuzzy Sets.Information and Control,8(3),338-353.