题名 |
EM Algorithm for the Stochastic Frontier Model |
并列篇名 |
EM演算法在隨機邊界模型之應用 |
DOI |
10.29963/TOJEB.200612.0005 |
作者 |
張曉芬(Hsiao-Fen Chang) |
关键词 |
隨機邊界模型 ; EM演算法 ; 單調遞減\遞增函數 ; A stochastic frontier model ; EM algorithm ; confidence intervals ; monotone decreasing\increasing function |
期刊名称 |
真理財經學報 |
卷期/出版年月 |
15期(2006 / 12 / 01) |
页次 |
109 - 122 |
内容语文 |
英文 |
中文摘要 |
一個隨機邊界模型定義如下: y(下标 it)=β0+x(下标 it)β+v(下标 it)-µ(下标 i) i=1,...N;t=1,...,T ε≡v(下标 it)-U(下标 i) y(下标 it)是第i公司,第t個時間點的生產值取對數值(logarithm)。x(下标 it)是投入變數的向量。效率這個要素(efficiency component µ(下标 i)≥0)是一個非負的常態慨。無效率是只公司的產出在邊界以下。v(下标 it)是一個不可觀測的隨機變數。模型的假設是: v(下标 it)~N(0,σ^2) µ(下标 i)~N(上标 +)(0,σ(上标 2 下标 µ))在建造各別生產效率µ(下标 i)的信賴區間有幾種估計過程: 1)JLMS和MC方法 2)MCB方法 本論文將應用EM演算法來求σ(上标 2 下标 *)和µ(上标 * 下标 it)的最大概似估計值。 |
英文摘要 |
A stochastic frontier model in a panel data is written as y(subscript it) =β0+x(subscript it)β+v(subscript it)-µ(subscript t) i=1,...N; t = 1,...,T ε(subscript it)≡v(subscript it)-µ(subscript t) Where y(subscript it) is the logarithm of the output of the ith firm and tth time periods, x(subscript it) is a vector of input. The efficiency component (µ(subscript i)≥0) is a one-sided, non-negative error, derived from a half-normal distribution. Technical inefficiency exists to the extent that a firm's output lies beneath the frontier. The stochastic component v(subscript it) is an unobservable random variable (a statistical noise). The model assume the following: v(subscript it)~N(0,σ^2) µ1~N(superscript +)(0,σ(superscript 2 subscript µ) There are several estimation techniques procedures about construction of confidence intervals of the individual producer's inefficiency µ(subscript i) 1) JLMS and MC method 2) MCB method In this paper, we consider the application of the EM algorithm for ML estimation of the parameters and µ(superscript * subscript it) and σ(superscript 2 subscript *). |
主题分类 |
社會科學 >
經濟學 |
参考文献 |
|