题名

台指現貨與期貨上下變幅對波動性之分析-GARCH-X模型的應用

并列篇名

An Examination of Both Adjusted Up and Down Range to Volatility in Stock and Futures Markets: The Application on GARCH-X Model

DOI

10.29963/TOJEB.200612.0002

作者

胡緒寧(Hsu-Ning Hu);蘇欣玫(Hsin-Mei Su);蘇榮斌(Jung-Bin Su)

关键词

調整後之上下變幅 ; 成交量變動因子 ; GARCH-X模型 ; Adjusted Up and Down Range ; volume effects ; GARCH-X model

期刊名称

真理財經學報

卷期/出版年月

15期(2006 / 12 / 01)

页次

29 - 46

内容语文

繁體中文

中文摘要

對金融商品時間序列資料而言GARCH模型具有較一般傳統計量模型更好的描述性,因此本文以修正後的GARCH模型,將外生變數放入平均數方程式(mean equation)及條件變異數(conditional variance)方程式中,即為GARCH-X模型,進一步考量調整後之上、下變幅對於資產價格波動性的捕捉,將報酬率、調整後之上、下變幅以及成交量、未平倉部位等相關因子加入GARCH模型之平均數及條件變異方程式中,探討對台灣證交所發行量加權股價指數現貨、台股期貨、電子期貨與金融期貨報酬率及條件變異數的影響。實證結果發現上下變幅及成交量變動因子對報酬率及條件變異數的確有各種顯著及不同的影響,而在成交量及未平倉部位的變動因子上,無論在現貨或是期貨上皆存在負向的效果。因此,本文將市場上的價格與成交量訊息加以整理而得的上下變幅以及成交量變動因子經由GARCH-X模型,更能有效的詮釋其與報酬率及報酬率之條件變異數的關係,而使其以更深入的方向來看待市場中的各式訊息。

英文摘要

This study applies GARCH-X models which combining Adjusted Up、Down Range and other related factors to capture the dynamics of volatility on Taiwan Market by allowing volatility to depend on both volume effects and other related information. The empirical result shows that both Adjusted Up and Down Range have significant and different effects on return and conditional variance. It is also found of a negative effect of volume and open interest on volatility. In conclusion, The GARCH-X model is more appropriate than traditional statistical models because it is capable of interpreting observed statistical characteristics of many time series of financial assets.

主题分类 社會科學 > 經濟學
参考文献
  1. Beckers, S.(1983).Variance of security price return based on high, low and closing prices.Journal of Business,56,97-112.
  2. Bessembinder, H.,P. J. Seguin(1993).Price volatility, trading volume, and market depth: evidence from futures markets.Journal of Financial and Quantitative Analysis,28,21-39.
  3. Board, J. L. G.,C. M. S. Sutc1iffe(1990).Information, volatility, volume, and maturity: an investigation of stock index futures.Review of Futures Markets,19,533-548.
  4. Bollers1ev, T.(1986).Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,31,307-327.
  5. Brandt, M. W.,C. S. Jones(2002).Unpublished manuscript.USA:University of Pennsylvania.
  6. Brock, W.,J. Lakonishok,B. LeBaron(1992).Simple Technical Trading Rules and the Stochastic Properties of Stock Returns.Journal of Finance,47,1731-1764.
  7. Chang, E.,R. Y. Chou,E. F. Nelling(2000).Market volatility and the demand for hedging in stock index futures.The Journal of Futures Markets,20,105-125.
  8. Chou, R. Y.(2005).Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) Model.Journal of Money, Credit, and Banking,37,561-582.
  9. Chou, R. Y.(2005).Modeling the asymmetry of stock movements using price ranges.Unpublished manuscripts, Institute of Economics, Academia Sinica.
  10. Clark, P. K.(1973).A subordinated stochastic process model with finite variance for speculative price.Econometrica,41,135-159.
  11. Comell, B.(1981).The relationship between volume and price variability in futures markets.Journal of Futures Markets,1,303-316.
  12. Copeland, T. E.(1976).A model of asset trading under the assumption of sequential information arrival.Journal of Finance,31,1149-1168.
  13. Davidian, M.,R. Carroll(1987).Variance function estimation.Journal of the American Statistical Association,82,1079-1091.
  14. Engle, R. F.(1982).Autoregressive conditional heteroscedasticity with estimates of the variance of United Kindom inflation.Econometrica,50,987-1008.
  15. Engle, R.,J. Russell(1998).Autogressive conditional duration: a, new model for irregular spaced transaction data.Econometrica,66,1127-1162.
  16. Fama, E. F.(1970).Efficient capital markets: a reviews of theory and empirical work.Journal of Finance,25,383-417.
  17. Fama, E. F.(1965).The behavior of stock market prices.Journal of Business,38,34-105.
  18. Garman M.,M. Klass(1980).On the estimation of security price volatilities from historical data.Journal of Business,56,97-112.
  19. Grammatikos, T.,A. Saunders(1986).Futures price variability: a test of maturity and volume effects.Journal of Business,59,319-330.
  20. Harris, L.(1986).Cross-security tests of the mixture of distributions hypothesis.Journal of Financial and Quantitative Analysis,21,39-46.
  21. Kapetanios, G.,Y. Shin,A. Snell(2003).Testing for a unit root in the nonlinear STAR framework.Journal of Econometrics,112,359-379.
  22. Lo, A. W.,H. M. Mamaysky,J. Wang(2000).Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation.Journal of Finance,55,1705-1770.
  23. Malliaris, A. G.,J. L. Urrutia(1991).Economic determinants of trading volume in futures markets.Economics Letters,35,157-167.
  24. Mandelbrot, B.(1971).When can price be arbitraged efficiency? A limit to the validity of the random walk and martingale models.Review of Economics and Statistics,53,225-236.
  25. Matrtell, T. F.,A. S. Wolf(1987).Determinants of trading volume in futures markets.Journal of Futures Markets,7,233-244.
  26. Morgan, I. G.(1976).Stock price and heteroskedasticity.Journal of Business,49,496-508.
  27. Najand, M.,K. Yung(1991).A GARCH examination of the relationship between volume and price variability in futures markets.Journal of Futures Markets,11,465-478.
  28. Parkinson, M.(1980).The extreme value method for estimating the variance of the rate of return.Journal of Business,53,61-65.
  29. Staikouras, S. K.(2006).Testing the stabilization hypothesis in the UK short-term interest rates: evidence from a GARCH-X model.The Quarterly Review of Economics and Finance,46,169-189.
  30. Westerfield, J. M.(1977).An examination of foreign exchange risk under fixed and floating rate regimes.Journal of International Economics,7,181-120.
  31. Yang, D.,Q. Zhang(2000).Drift independent volatility estimation based on high, low, open, and close prices.Journal of Business,73,477-491.
  32. 周雨田、巫春洲、劉炳麟(1994)。動態波動模型預測能力之比較與實證。財金論文叢刊,1,1-23。
被引用次数
  1. 柯智中(2011)。臺股指數期貨波動性與獲利性之研究。國立臺灣大學農業經濟學系學位論文。2011。1-100。