题名

西德州與布蘭特原油避險策略

并列篇名

The Hedging Strategy of Crude Oil Spot

DOI

10.29963/TOJEB.200806.0003

作者

劉洪鈞(Hung-Chun Liu);黃聖志(Sheng-Shih Huang);王怡文(Yi-Wen Wang)

关键词

原油期貨 ; 厚尾 ; GARCH ; 移動視窗 ; 避險績效 ; Crude oil futures ; Heavy tails ; GARCH ; Rolling window ; Hedge performance

期刊名称

真理財經學報

卷期/出版年月

18期(2008 / 06 / 01)

页次

71 - 98

内容语文

繁體中文

中文摘要

本文以美國西德州及英國布蘭特原油爲標的,針對1990年波斯灣戰爭使石油市場大幅波動的時期,以相對應的原油期貨進行避險。本文以持有現貨部位探討空頭避險策略作爲研究主題,並假設不考慮交易成本的前提下,修正誤差爲常態的假設,改以Politis (2004)提出之厚尾分配,應用GARCH模型、ARJI模型、GARCH-NoVaS模型與ARJI-HT模型,針對不同避險期間,進行樣本外避險績效的評估。實證結果如下:一、在本研究的研究期間內,假設誤差項爲厚尾分配,其避險績效皆較常態假設優良,表示厚尾分配的設定能有效捕捉到資產報酬率的特性,提高模型的配適能力,提升樣本外的避險績效。二、ARJI模型所計算之避險績效較GARCH模型優良,顯示加入跳躍的因素後,模型更能掌握在短時間內的不確定性,並精確捕捉原油價格波動性,使得避險績效較佳。三、各模型在預測期間之避險績效,大致上均較未避險時之報酬變異降低約70%~80%,因此投資者仍可以規避其價格波動的風險。 實證結果建議投資者在進行操作時,以西德州原油期貨進行避險者,宜採用ARJI模型估計;而以布蘭特原油期貨進行避險者,宜採GARCH-NoVaS模型作爲避險模型,可有效提升避險績效,降低投資風險。

英文摘要

Because of the economic recession always comes with continuous rise in price of oil. Consequently, hedging of oil price has become a crucial issue. Although the GARCH model can capture the time-varying volatility of price, and the ARJI model captures the jump dynamics of price, they are still not good enough to correct fat-tailed property of returns innovation. For this reason, this study employs the GARCH model, ARJI model and GARCH-NoVaS model that accommodate the heavy-tailed returns innovation proposed by Politis (2004) to further examine the hedge performance of WTI crude oil and Brent crude oil, respectively under alternative hedging periods during the Gulf War in 1990. The empirical results show that hedging during high volatility period can reduce variance about 70%~80%. The ARJI model generates superior hedge performance to GARCH model. Moreover, the assumption of GARCH residual in heavy-tail distribution is more appropriate than normal distribution, so that models which accommodate with heavy-tail returns innovation have better hedge performance than traditional return specification. Overall, this paper suggests using the ARJI model to enhance the hedge performance for investors in WTI crude oil markets, while using the GARCH-NoVaS model to abate investment risk for them in Brent crude oil markets.

主题分类 社會科學 > 經濟學
参考文献
  1. 李命志、邱哲修、黃景明、陳君達(2003)。臺灣股價指數期貨最適避險策略之研究。企業管理學報,58,85-104。
    連結:
  2. 高峰、洪瑞成、姜世杰、李命志(2005)。價格跳躍下的最適避險策略-日經225指數現貨與期貨。華岡經濟論叢,4(2),65-90。
    連結:
  3. Baillie, R. T.,R. J. Myers.(1991).Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge.Journal of Applied Econometric,6,109-124.
  4. Bates, D. S.(1991).The Crash of `87: Was it Expected? The Evidence from the Options Markets.Journal of Finance,46(3),1009-1044.
  5. Benet, B. A.(1992).Hedge Period Length and Ex-ante Futures Hedging Effectiveness: The Case of Foreign-Exchange Risk Cross Hedges.Journal of Futures Markets,43(1),163-175.
  6. Bollerslev, T.(1986).Generalized autoregressive heteroskedasticity.Journal of Econometrics,31,307-327.
  7. Bollerslev, T.(1987).A Conditional Heteroskedastic Time Series Model for Speculative Price and Rates of Return.Reviews of Economics and Statistics,69,542-547.
  8. Chan and Young(2006).Jumping Hedges: An Examination of Movements in Copper Spot and Futures Market.Journal of Futures Markets,26(2),169-188.
  9. Chan, W. H.,J. M. Maheu(2003).Conditional Jump Dynamics in Stock Market Return.Journal of Business & Economic Statistics,20(3),377-389.
  10. Chiu(2005).Hedging with Floor-Traded and E-mini Stock Index Futures.Quarterly Journal of Business and Economics,44(3/4),49-68.
  11. Das, S. R.(1998).Working Paper.National Bureau of Economic Research.
  12. Ederington, L. H.(1979).The Hedging Performance of the New Future Markets.The Journal of Finance,34(1),157-170.
  13. Engle, R. F.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.Econometrica,50(4),987-1007.
  14. Figlewski, S.(1984).Hedging Performance and Basis Risk in Stock Index Futures.Journal of Finance,39(3),657-669.
  15. Fong, W. M.,K. H. See(2002).A Markov Switching Model of the Conditional Volatility of Crude Oil Futures Prices.The Energy Economics,24,71-95.
  16. Fortune, P.(1999).Are Stock Returns Different Over Weekends? A Jump Diffusion Analysis of the Weekend Effect.New England Economic Review,September/October,3-19.
  17. Gagnon L.,G. Lypny(1997).The benefits of dynamically hedging the Toronto 35 stock index.Canadian Journal of Administrative Sciences,14(1),69-78.
  18. Johnson, L.(1960).The Theory of Hedging and Speculation in Commodity Futures.Review of Economic Studies,27(3),139-151.
  19. Jones, C.,G. Kaul(1960).Oil and the stock markets.Journal of Finance,51(2),463-491.
  20. Koutmos, G.,A. Pericli(1999).Hedging GNMA Mortgage-Backed Securities with T-Note Futures: Dynamic versus Static Hedging.Real Estate Economics,27(2),335-363.
  21. Kroner K. F.,J. Sultan(1993).Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures.The Journal of Financial and Quantitative Analysis,28(4),535-551.
  22. Lien, D.,Y. K. Tse(1999).Fractional Cointegration and Futures Hedging.Journal of Futures Markets,19(4),457-474.
  23. Lindahl, M.(1993).Minimum Variance Hedge Ratios for Stock Index Futures: Duration and Expiration Effects.The Journal of Futures Markets,12(1),33-53.
  24. Markowitz, H.(1952).Portfolio Selection.Journal of Finance,7(1),77-91.
  25. Park, T. H.,L. N. Switzer(1995).Bivariate GARCH Estimation of the Optimal Hedge Ratios for Stock Index Future: A Note.Journal of Futures Markets,15,61-67.
  26. Politis, N. Dimitris(2004).A Heavy-tailed Distribution for ARCH Residuals with Application to Volatility Prediction.Annals of Economics and Finance,5,283-298.
  27. Stein, J. L.(1961).The Simultaneous Determination of Spot and Futures Prices.American Economic Review,51(5),1012-1025.
  28. 余尚武、賴昌作(2001)。股價指數期貨之避險比率與避險效益。管理研究學報,1(1),1-31。
  29. 林筠、傅鍾仁(1993)。我國進口油價風險管理之研究-原油期貨交叉避險。證券市場發展季刊,42-56。
  30. 邱建良、魏志良、吳佩珊、邱哲修(2004)。TAIFEX與MSCI台股指數期貨與現貨直接避險策略之研究。商管科技季刊,5(2),169-184。
  31. 邱哲修、林卓民、洪瑞成、徐明傑(2005)。價格不連續下的最適避險策略-ARJI模型之應用。計量管理期刊,2(2),189-206。
被引用次数
  1. 姜淑美、王立均(2012)。次級房貸危機後,美國股市外溢效果之探討。會計與財金研究,5(1),43-60。