题名

以決策樹之迴歸樹建構住宅價格模型-台灣地區之實證分析

并列篇名

Regression Trees for Housing Price Models: An Empirical Study on Taiwan

DOI

10.6375/JHS.200706.0001

作者

陳樹衡(Shu-Heng Chen);郭子文(Tzu-Wen Kuo);棗厥庸(Chueh-Yung Tsao)

关键词

房價 ; 特徵方程式 ; 決策樹 ; Cubist迴歸樹 ; house prices ; hedonic equation ; decision trees ; Cubist regression trees

期刊名称

住宅學報

卷期/出版年月

16卷1期(2007 / 06 / 01)

页次

1 - 20

内容语文

繁體中文

中文摘要

以往房地產特徵方程式之估計多採用複迴歸模型,後期學者開始使用半參數或無母數方法估計特徵方程式,本研究以決策樹中的Cubist迴歸樹作為房地產特徵方程式之估計模型,主要原因有三:其一,Cubist迴歸樹模型之設計符合房地產資料特性。其二,Cubist迴歸樹配適能力高且易於解釋。其三,當使用大量資料估計特徵方程式,Cubist迴歸樹相對於其他無母數方法運算上較有效率。本研究以台灣地區2002年至2004年間45,419筆房地產資料為研究樣本,以複迴歸模型為基準模型,研究發現迴歸樹之配適能力高於複迴歸模型,且並未有過度配適之問題。此外,特徵變數與房地產價格間存有非線性關係,個體變數較總體變數具有廣泛之解釋力。

英文摘要

The purpose of this paper is to use Cubist regression trees to estimate the hedonic equation, as the Cubist is expected to be more efficient than other nonparametric methods. In addition, the architecture of the Cubist is intuitive when applied to the housing price model. In this study, the regression method, which is frequently used in the estimation of the hedonic equation, is used as the benchmark model to be compared with. Based on 45,419 observations from the Taiwan area, it is found that the Cubist outperforms the benchmark model. Moreover, it is found that there are nonlinear relationships between the house prices and the characteristic variables. Finally, the micro characteristics exhibit higher explanatory power than the macro ones.

主题分类 社會科學 > 社會學
参考文献
  1. Anglin, P.,R. Gençay(1996).Semiparametric Estimation of a Hedonic Price Function.Journal of Applied Econometrics,11,633-648.
  2. Belsley, D. A.,E. Huh,R. E. Welsch(1980).Regression Diagnostics: Identifying Influential Data and Source of Collinearity.New York:John Wiley and Sons.
  3. Bin, O.(2004).A Prediction Comparison of Housing Sales Prices by Parametric versus Semiparametric Regression.Journal of Housing Economics,13,68-84.
  4. Boa, H.,A. Wan(2004).On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data.Real Estate Economics,32(3),487-507.
  5. Breiman, L.,J. H. Friedman,R. A. Olsen,C. J. Stone(2004).Classification and Regression Trees.CA:Wadsworth.
  6. Chen, S.-H. (ed.)(2002).Genetic Algorithms and Genetic Programming in Computational Finance.Oxford:Kluwer.
  7. Chen, S.-H.,P. Wang(2003).Computational Intelligence in Economics and Finance.New York:Springer.
  8. Clapp, J.(2004).A Semiparametric Method for Estimating Local House Price Indices.Real Estate Economics,15(1),127-160.
  9. Court, A.(1939).The Dynamics of Automobile Demand.New York:General Motors Corporation.
  10. Daniels, H.,B. Kamp(1999).Application of MLP Networks to Bond Rating and House Pricing.Neural Computing & Applications,8,226-234.
  11. Fan, G.-Z.,S. E. Ong,H. C. Koh(2006).Determinants of House Price: A Decision Tree Approach.Urban Studies,43(12),2301-2316.
  12. Gençay, R.,X. Yang(1996).A Forecast Comparison of Residential Housing Prices by Parametric versus Semiparametric Conditional Mean Estimators.Economics Letters,52,129-135.
  13. Griliches, Z. (ed.)(1971).Price Indexes and Quality Change: Studies in New Methods of Measurement.Cambridge:Harvard University Press.
  14. Griliches, Z. (ed.)(1971).Price Indexes and Quality Change: Studies in New Methods of Measurement.Cambridge:Harvard University Press.
  15. Kershaw, P.,P. Rossini(1999).Using Neural Networks to Estimate Constant Quality House Price Indices.Proceedings of the Fifth Annual Pacific-Rim Real Estate Society Conference,Kuala Lumpur, Malaysia:
  16. Kim, H.,W.-Y. Loh,Y.-S. Shih,P. Chaudhuri(2007).Visualizable and Interpretable Regression Models with Good Prediction Power.IIE Transactions Special Issue on Data Mining and Web Mining.
  17. Lancaster, K.(1966).A New Approach to Consumer Theory.Journal of Political Economy,74,132-157.
  18. Lomsombunchai, V.,C. Gan,M. Lee(2004).House Price Prediction: Hedonic Price Models vs. Artificial Neural Nets.American Journal of Applied Statistics,1(3),193-201.
  19. Martins-Filho, C.,O. Bin(2005).Estimation of Hedonic Price Functions via Additive Nonparametric Regression.Empirical Economics,30,93-114.
  20. Pace, R.(1998).Appraisal Using Generalized Additive Models.Journal of Real Estate Research,15,77-99.
  21. Quinlan, J. R.(1993).C4.5: Programs for Machine Learning.CA:Morgan Kaufmann.
  22. Quinlan, J. R.(1986).Introduction of Decision Tree.Machine Learning,1,81-106.
  23. Quinlan, J. R.(1996).Improved Use of Continuous Attributes in C4.5.Journal of Artificial Intelligence Research,4,77-90.
  24. Rosen, S.(1974).Hedonic Prices and Implicit Markets: Product Differentiation in Perfect Competition.Journal of Political Economy,82(1),34-55.
  25. Wong, K. C.,A. T. P. So,Y. C. Hung,K. Wang,M. L. Wolverton (ed.)(2002).Real Estate Valuation Theory.Boston:Kluwer Academic.
  26. 林國民(1996)。碩士論文(碩士論文)。國立成功大學。
  27. 張金鶚主持(1995)。台灣地區住宅價格指數之研究。行政院經建會。
  28. 辜炳珍、劉瑞文(1989)。房地產價格指數編查之研究。行政院主計處。
  29. 劉振誠(1986)。碩士論文(碩士論文)。國立中興大學。
被引用次数
  1. 蔡紋琦、郁嘉綾(2018)。應用大數據於杭州市房地產價格模型之建立。Journal Of Data Analysis,13(6),77-101。
  2. 董呈煌、陳俊麟、李春長、吳韻玲(2016)。SVR與OLS在住宅價格預測正確率的比較。住宅學報,25(2),31-51。
  3. 高惠松(2013)。以Cubist 迴歸樹建構公司情境特質之股權評價模型。會計評論,56,107-145。
  4. 劉富容,劉正夫,黃孝雲,游璿達(2019)。利用政府開放資料探討影響台北市房價之主要房屋特性及周邊設施影響因子。Journal of Data Analysis,14(5),1-26。
  5. 周淑卿,江明珠,王怡婷(2023)。結合時空因子的大量估價模型應用:桃園蛋白、蛋黃、邊緣區的分析比較。住宅學報,32(1),75-98。