中文摘要
|
本研究以國泰建設公司住宅新推個案市場調查資料,建立預售屋特徵價格模型。以「最小平方法(ordinary least squares, OLS)」為基準,比較DFFITS和「最小消去平方法(least trimmed squares, LTS)」異常點刪除技術的表現。LTS尋求配適多數樣本的迴歸參數,當樣本殘差值大於門檻值則賦予權重0,視為異常點,再以OLS校估參數,稱為「再加權最小平方法(re-weighted least squares, RLS)」。實證結果發現:1. RLS和DFFITS模型表現較OLS佳。2.住宅新推個案的異常點特色,來自特定區位和特定行政區的產品定位。3. RLS和DFFITS模型的房價指數,長期波動大致雷同,惟若觀察短期變化,不同異常點處理技術的房價波動不同,影響短期解讀。
|
英文摘要
|
The study employs the presale housing market survey data of the Cathay Real Estate Development Company to establish presale housing hedonic models. To observe the effects of outliers, ordinary least squares (OLS) is employed as a benchmark to compare the model performance of two outlier deletion techniques, DFFITS and least trimmed squares (LTS). LTS is aimed at fitting a regression model to most of the data while identifying the outliers as the points with large residuals. By giving a zero weight to the cases with residuals larger than a threshold value, the outliers are disregarded in the following OLS calibration process. The technique is referred to as reweighted least squares (RLS). The results demonstrate that: 1. the RLS regression and DFFITS models outperform the OLS models; 2. most outliers come from a specific area and product positioning from specific districts; and 3. in the long term, these different estimation techniques do not affect housing price indices-however, if we observe the movements season by season, the different estimation techniques yield different price movements, which affect the interpretation of short-term presale housing market data.
|
参考文献
|
-
李泓見、張金鶚、花敬群(2006)。台北都會區不同住宅類型價差之研究。台灣土地研究,9(1),63-87。
連結:
-
林秋瑾(1996)。穩健性住宅租金模式之探討—異常點之分析。住宅學報,4,51-72。
連結:
-
林秋瑾、楊宗憲、張金鶚(1996)。住宅價格指數之研究—以台北市為例。住宅學報,4,1-30。
連結:
-
林祖嘉、馬毓駿(2007)。特徵方程式大量估價法在台灣不動產市場之應用。住宅學報,16(2),1-22。
連結:
-
張金鶚、楊宗憲、洪御仁(2008)。中古屋及預售屋房價指數之建立、評估與整合—台北市之實證分析。住宅學報,17(2),13-35。
連結:
-
楊宗憲(2003)。住宅市場之產品定位分析—建商推案行為之研究。住宅學報,12(2),123-139。
連結:
-
Andersen, R.(2008).Modern Methods for Robust Regression.California:Sage Publications.
-
Belsley, D. A.,Kuh, E.,Welsch, R. E.(1980).Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.New York:John Wiley.
-
Burns, P. J.(1992).,Statistical Sciences, Inc..
-
Finger, R.,Hediger, W.(2008).The Application of Robust Regression to a Production Function Comparison.Open Agriculture Journal,2,90-98.
-
Haurin, D. R.,Hendershott, P. H.(1991).House Price Indexes: Issues and Results.AREUEA Journal,19(3),259-269.
-
Jansen, S. J. T.,de Vries, P.,Coolen, H. C. C. H.,Lamain, C. J. M.,Boelhouwer, P. J.(2007).Developing a House Price Index for The Netherlands: A Practical Application of Weighted Repeat Sales.Journal of Real Estate Finance and Economics,37(2),163-186.
-
Maimon, O.(ed.),Rokach, L.(ed.)(2010).Data Mining and Knowledge Discovery Handbook.New York:Springer.
-
Prasad, N.,Richards, A.(2008).Improving Median Housing Price Indexes through Stratification.Journal of Real Estate Research,30(1),45-71.
-
Rosen, S.(1974).Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition.Journal of Political Economy,82(1),34-55.
-
Rousseeuw, P. J.(1984).Least Median of Squares Regression.Journal of American Statistic Association,79(388),871-880.
-
Rousseeuw, P. J.,Leroy, A. M.(2003).Robust Regression and Outlier Detection.New York:Wiley-Interscience.
-
Zaman, A.(1996).Statistical Foundations for Econometric Techniques.New York:Academic Press.
-
Zaman, A.,Rousseeuw, P.J.,Orhan, M.(2001).Econometric Applications of High-Breakdown Robust Regression Techniques.Economics Letter,71(1),1-8.
-
王彤、何大衛(2002)。醫用線性迴歸模型多個異常點診斷及穩健估計方法。中華疾病控制雜誌,6(4),338-340。
|