题名

市場關注與房市變化關聯性之驗證

并列篇名

An Examination of Market Attention in the Real Estate Market

作者

朱芳妮(Fang-Ni Chu)

关键词

關注 ; 谷歌搜尋 ; 心理因素 ; 房市 ; attention ; Google search ; psychological factors ; real estate market

期刊名称

住宅學報

卷期/出版年月

31卷2期(2022 / 12 / 01)

页次

91 - 113

内容语文

英文

中文摘要

心理學相關研究指出人對於訊息的處理能力是有限的,因此關注在何處以及關注的程度對於決策過程會產生重要的影響。有限的關注常使得人忽略一些有用的資訊,進而造成對市場做出過度或不足的判斷。本研究採用Google搜尋引擎的關鍵字搜尋量作為市場關注的代理變數,探討關注與房市價格、交易量、銷售天數及議價空間等四項指標間之關係。基本線性迴歸實證結果顯示,關注對此四項房市指標的影響在同期與落後一期是顯著的且估計係數的符號與理論相符,然而整體市場關注落後到兩期對房價的影響會出現反轉。關注門檻效果實證顯示,關注對房價、銷售天數與議價空間具有門檻效果。當整體房市關注在較低程度時,即會造成銷售天數與議價空間出現非線性變化;而住宅成屋關注在較低程度時,會使銷售天數產生非線性變化,然需累積到較高程度後,始造成房價的非線性變化。因果關係檢定發現整體房市關注與房價之間具有雙向因果關係,住宅成屋關注與交易量之間亦具有雙向因果關係。本研究成果應有助於了解市場參與者的心理因素與其如何影響房市之變化。

英文摘要

Psychological research indicates that people's ability to process information is limited, so where and how much attention is paid will have an important impact on the decision-making process. Limited attention often makes people ignore some useful information and leads to excessive or insufficient judgments regarding the market. This study uses Google search volume as a proxy variable for market attention, and explores the relationship between market attention and four indicators, namely, housing prices, transaction volume, time-on-the-market and price concession. The empirical evidence obtained from basic linear regression shows that the impact of market attention on these four market indicators is significant during the corresponding period and lagged one period, and the signs of the regression coefficients are consistent with the theory. However, the direction of the relationship between the overall market attention and the housing price indicator is reversed when the variables are lagged two periods. The empirical findings of the threshold effect tests show that the attention has a significant threshold effect on housing prices, time-on-the-market and price concession. When the overall market attention accumulates to a relatively low level, it will cause time-on-the-market and price concession to have nonlinear changes. When the attention of the existing housing market accumulates to a relatively low level, it will cause a nonlinear change in time-on-the-market. However, only when the attention of the existing housing market accumulates to a relatively high level will it lead to nonlinear changes in housing prices. The VECM Granger causality tests show that there is a two-way relationship between the overall market attention and housing prices, and there is also a two-way relationship between the attention of the existing housing market and transaction volume. The findings of this study should contribute to a better understanding of the psychological factor of market participants and how it affects changes in the real estate market.

主题分类 社會科學 > 社會學
参考文献
  1. Chen, M. C.,Patel, K.(2002).An Empirical Analysis of Determination of Housing Prices in the Taipei Area.Taiwan Economic Review,30(4),563-595.
    連結:
  2. 朱芳妮, F. N.,陳明吉, M. C.(2018)。從行為經濟學看台灣不動產市場:羅伯特席勒教授來台演講之省思與啟示。住宅學報,27(2),111-128。
    連結:
  3. 朱芳妮, F. N.,楊茜文, C. W.,黃御維, Y. W.,陳明吉, M. C.(2020)。媒體傳播效應與房市變化關聯性之驗證。管理學報,37(3),225-257。
    連結:
  4. 朱芳妮, F. N.,楊茜文, C. W.,蘇子涵, T. H.,陳明吉, M. C.(2020)。情緒會影響房市嗎 ? 指數編制與驗證。住宅學報,29(2),35-68。
    連結:
  5. 林左裕, T. C.(2019)。應用網路搜尋行為預測房地產市場。應用經濟論叢,105,221-257。
    連結:
  6. 彭建文, C. W.,賴鳴美, M. M.(2006)。賣方訂價策略對成交價格之影響分析。住宅學報,15(1),1-20。
    連結:
  7. 楊茜文, C. W.,朱芳妮, F. N.,呂少毫, S. H.,陳明吉, M. C.(2022)。房市參與者之關注會影響房價嗎?。管理與系統,29(4),495-523。
    連結:
  8. 蔡怡純, I. C.,陳明吉, M. C.(2008)。台北地區不動產價格波動之不對稱性探討。住宅學報,17(2),1-11。
    連結:
  9. Andrei, D.,Hasler, M.(2015).Investor Attention and Stock Market Volatility.The Review of Financial Studies,28(1),33-72.
  10. Anglin, P. M.(1997).Determinants of Buyer Search in a Housing Market.Real Estate Economics,25(4),567-589.
  11. Asabere, P. K.,Huffman, F. E.(1993).Price Concessions, Time on Market, and the Actual Sale Price of Homes.The Journal of Real Estate Finance and Economics,6(2),167-174.
  12. Askitas, N.(2016).Trend-Spotting in the Housing Market.Cityscape: A Journal of Policy Development and Research,18(2),165-177.
  13. Bai, J.,Perron, P.(2003).Computation and Analysis of Multiple Structural Change Models.Journal of Applied Econometrics,18(1),1-22.
  14. Bank, M.,Larch, M.,Peter, G.(2011).Google Search Volume and Its Influence on Liquidity and Returns of German Stocks.Financial Mark Portfolio Management,25(3),239-264.
  15. Barber, B. M.,Odean, T.(2008).All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors.The Review of Financial Studies,21(2),785-818.
  16. Barreira, N.,Godinho, P.,Melo, P.(2013).Nowcasting Unemployment Rate and New Car Sales in Southwestern Europe with Google Trends.NETNOMICS: Economic Research and Electronic Networking,14(3),129-165.
  17. Beracha, E.,Wintoki, M. B.(2013).Forecasting Residential Real Estate Price Changes from Online Search Activity.Journal of Real Estate Research,35(3),283-312.
  18. Caporin, M.,Poli, F.(2017).Building News Measures from Textual Data and an Application to Volatility Forecasting.Econometrics,5(3),1-46.
  19. Chauvet, M.,Gabriel, S.,Lutz, C.(2016).Mortgage Default Risk: New Evidence from Internet Search Queries.Journal of Urban Economics,96,91-111.
  20. Chen, M. C.,Chang, C. O.,Yang, C. Y.,Hsieh, B. M.(2012).Investment Demand and Housing Prices in an Emerging Economy.Journal of Real Estate Research,34(3),345-374.
  21. Chen, M. C.,Patel, K.(1998).House Price Dynamics and Granger Causality: An Analysis of Taipei New Dwelling Market.Journal of the Asian Real Estate Society,1(1),101-126.
  22. Cohen, L.,Frazzini, A.(2008).Economic Links and Predictable Returns.The Journal of Finance,63(4),1977-2011.
  23. Corwin, S. A.,Coughenour, J. F.(2008).Limited Attention and the Allocation of Effort in Securities Trading.The Journal of Finance,63(6),3031-3067.
  24. D’Avanzo, E.,Pilato, G.,Lytras, M.(2017).Using Twitter Sentiment and Emotions Analysis of Google Trends for Decisions Making.Program: electronic library and information systems,51(3),322-350.
  25. Da, Z.,Engelberg, J.,Gao, P.(2011).In Search of Attention.The Journal of Finance,66(5),1461-1499.
  26. Damianov, D. S.,Wang, X.,Yan, C.(2021).Google Search Queries, Foreclosures, and House Prices.The Journal of Real Estate Finance and Economics,63,177-209.
  27. DellaVigna, S.,Pollet, J. M.(2009).Investor Inattention and Friday Earnings Announcements.The Journal of Finance,64(2),709-749.
  28. Dietzel, M. A.(2016).Sentiment-Based Predictions of Housing Market Turning Points with Google Trends.International Journal of Housing Markets and Analysis,9(1),108-136.
  29. Dietzel, M. A.,Braun, N.,Schäfers, W.(2014).Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data.Journal of Property Investment & Finance,32(6),540-569.
  30. Elshendy, M.,Fronzetti Colladon, A.,Battistoni, E.,Gloor, P. A.(2018).Using Four Different Online Media Sources to Forecast Crude Oil Price.Journal of Information Science,44(3),408-421.
  31. Engle, R. F.,Granger, C. W. J.(1987).Co-Integration and Error Correction: Representation, Estimation, and Testing.Econometrica,55(2),251-276.
  32. Fama, E. F.(1970).Efficient Capital Markets: A Review of Theory and Empirical Work.The Journal of Finance,25(2),383-417.
  33. Granger, C. W. J.(1969).Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.Econometrica,37(3),424-438.
  34. Hamid, A.,Heiden, M.(2015).Forecasting Volatility with Empirical Similarity and Google Trends.Journal of Economic Behavior & Organization,117,62-81.
  35. Hansen, B. E.(2011).Threshold Autoregression in Economics.Statistics and Its Interface,4(2),123-127.
  36. Hohenstatt, R.,Käsbauer, M.,Schäfers, W.(2011).“Geco” and Its Potential for Real Estate Research: Evidence from the US Housing Market.Journal of Real Estate Research,33(4),471-506.
  37. Jacobs, H(2015).The Role of Attention Constraints for Investor Behavior and Economic Aggregates: What Have We Learnt so Far?.Management Review Quarterly,65(4),217-237.
  38. Jiang, B.,Zhu, H.,Zhang, J.,Yan, C.,Shen, R.(2021).Investor Sentiment and Stock Returns During the COVID-19 Pandemic.Frontier in Psychology,12,1-5.
  39. Johansen, S.,Juselius, K.(1990).Maximum Likelihood Estimation and Inferences on Cointegration-with Applications to the Demand for Money.Oxford Bulletin of Economics and Statistics,52(2),169-210.
  40. Kahneman, D.(1973).Attention and Effort.Englewood Cliffs, NJ:Prentice-Hall.
  41. Kahneman, D.,Tversky, A.(1979).Prospect Theory: An Analysis of Decision under Risk.Econometrica,47(2),263-291.
  42. Kim, S.,Shin, D. H.(2016).Forecasting Short-Term Air Passenger Demand Using Big Data from Search Engine Queries.Automation in Construction,70,98-108.
  43. Lee, C. C.,Chen, M. P.,Lee, C. C.(2021).Investor Attention, ETF Returns, and Country-Specific Factors.Research in International Business and Finance,56,1-19.
  44. Limnios, A. C.,You, H.(2021).Can Google Trends Improve Housing Market Forecasts?.Curiosity: Interdisciplinary Journal of Research and Innovation,1(2),1-17.
  45. Miceli, T. J.(1989).The Optimal Duration of Real Estate Listing Contracts.AREUEA Journal,17(3),267-277.
  46. Michaely, R,Rubin, A.,Vedrashko, A.(2013).Firm Heterogeneity and Investor Inattention to Friday Earnings Announcements.Conference Paper,Quebec City:
  47. Miller, N. G.(1978).Time on the Market and Selling Price.AREUEA Journal,6(2),164-174.
  48. Namouri, H.,Jawadi, F.,Ftiti, Z.,Hachicha, N.(2018).Threshold Effect in the Relationship Between Investor Sentiment and Stock Market Returns: A PSTR Specification.Applied Economics,50(5),559-573.
  49. Oestmann, M.,Bennöhr, L.(2015).Determinants of House Price Dynamics. What Can We Learn from Search Engine Data?.Review of Economics,66(1),99-127.
  50. Shleifer, A.,Vishny, R. W.(1997).The Limits of Arbitrage.The Journal of Finance,52(1),35-55.
  51. Swamya, V.,Dharanib, M.,Takedac, F.(2019).Investor Attention and Google Search Volume Index: Evidence from an Emerging Market Using Quantile Regression Analysis.Research in International Business and Finance,50,1-17.
  52. Vakrman, T.,Kristoufek, L.(2015).Underpricing, Underperformance and Overreaction in Initial Public Offerings: Evidence from Investor Attention Using Online Searches.SpringerPlus,4(84),1-11.
  53. Wu, J.,Deng, Y.(2015).Intercity Information Diffusion and Price Discovery in Housing Markets: Evidence from Google Searches.The Journal of Real Estate Finance and Economics,50(3),289-306.
  54. Wu, L.,Brynjolfsson, E.(2015).The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales, Economic Analysis of the Digital Economy.University of Chicago Press.