题名

主成份分析和共同因素分析相關議題之探究

并列篇名

Issues Related to Principal Component Analysis and Common Factor Analysis

DOI

10.6429/FES.200202.0107

作者

傅粹馨(Tsuey-Shing Fu)

关键词

共同因素分析 ; 因素抽取 ; 主成份分析 ; 轉軸 ; 陡坡圖 ; common factor analysis ; factor extraction ; principal component analysis ; rotation ; scree plot

期刊名称

教育與社會研究

卷期/出版年月

3期(2002 / 02 / 01)

页次

107 - 131

内容语文

繁體中文

中文摘要

主成份分析與共同因素分析廣爲研究者所使用抽取因素的方法。主成份分析與共同因素分析是不同的。共同因素分析之目的在抽取因素來解釋變項間的關係,而主成份分析之目的在作變項的減縮。 本文探討八個主題:(1)緒論:(2)主成份分析之意義;(3)共同因素分析之意義;(4)主成份分析與共同因素分析之異同;(5)主成份分析與共同因素分析結果近似;(6)共同因素分析較主成份分析爲宜;(7)目前普遍使用之因素分析方法;(8)實例分析。 執行因素分析時宜瞭解研究之目的與決定抽取多少個因素是相當重要的,這些會影響因素的抽取與轉軸後的結果,研究者不能太依賴電腦提供之內設選項。

英文摘要

The principal component analysis (PCA) and common factor analysis (CFA) are the most basic and frequently used factor analytic models. In fact, PCA and CFA are two different procedures. Their goals are also divergent. That is, CFA is used to extract as many factors as necessary to explain the correlations among the variables. On the other hand, PCA is meant to create summaries of variables. This paper consists of eight main parts: (1) to introduce the purpose of this study; (2) to review the basic concepts of PCA; (3) to review the basic concepts of CFA; (4) to compare the characteristics of PCA and CFA; (5) to describe the similarity between PCA and CFA based on empirical researches; (6) to discuss the reason that CFA is more appropriate than PCA; (7) to present the common methods for using factor analysis; and (8) to display an example by using PCA and CFA. The critical decisions in the selection of factor analysis are to understand the purpose of the study and to determine the number of factors to extract. The results of extraction and rotation are affected by these decisions. Users should not rely on the default options provided by computer programs.

主题分类 社會科學 > 教育學
社會科學 > 社會學
参考文献
  1. Acito, F.,Anderson, R. D.(1980).A Monte Carlo comparison of factor analytic methods.Journal of Marketing Research,17,228-236.
  2. Benson, J.,Nasser, F.(1998).On the use of factor analysis as a research tool.Journal of Vocational Education Research,23(1),13-33.
  3. Bentler, P. M.,Kano, Y.(1990).On the equivalence of factors and components.Multivariate Behavioral Research,25(1),67-74.
  4. Borgatta, E. F.(1989).A note on using factor analysis and other procedures in research: A reply to Wilkinson.Sociological Methods and Research,17(4),460-464.
  5. Borgatta, E. F.,Kercher, K.,Stull, D. E.(1986).A cautionary note on the use of principal component analysis.Sociological Methods and Research,15(1-2),160-168.
  6. Cattell, R. B.(Eds.),J. Nesselroade(1988).Handbook of multivariate experimental psychology.New York:Plenum Press.
  7. Cliff, N.(1988).The eigenvalue-greater-than-one rule and the reliability of components.Psychological Bulletin,103,276-279.
  8. Comrey, A. L.(1978).Common methodological problem in factor analytic studies.Journal of Consulting and Clinical Psychology,46(4),648-659.
  9. Comrey, A. L.,Lee, H. B.(1992).A first course in factor analysis.New York:Academic Press.
  10. Daniel, L. G.(1990).Common factor analysis or component analysis: An update on an old debate.Paper presented at the Mid-South Educational Research Association.
  11. Fava, J. L.,Velicer, W. F.(1996).The effects of underextraction in factor and component analyses.Educational and Psychological Measurement,56,907-929.
  12. Fava, J. L.,Velicer, W. F.(1992).The effect of overextraction on factor and component analysis.Multivariate Behavioral Research,27(3),387-415.
  13. Fava, J. L.,Velicer, W. F.(1992).An empirical comparison of factor, image, component, and scale scores.Multivariate Behavioral Research,27(3),301-322.
  14. Ford, J. K.,MacCallum, R. C.,Tait, M.(1986).The application of exploratory factor analysis in applied psychology: A critical review and analysis.Personnel Psychology,39,291-314.
  15. Gorsuch, R. L.(1983).Factor analysis.NJ:Erlbaum.
  16. Gorsuch, R. L.(1997).Exploratory factor analysis: Its role in item analysis.Journal of Personality Assessment,68(3),532-560.
  17. Gorsuch, R. L.(1990).Common factor analysis versus component analysis: Some well and little known facts.Multivariate Behavioral Research,25(1),33-39.
  18. Gorsuch, R. L.,J. Nesselroade,R. B. Cattell (Eds.)(1988).Handbook of multivariate experimental psychology.New York:Plenum Press.
  19. Hakstian, A. R.,Rogers, T.,Cattell, R.(1982).The behavior of number-of-factors rules with simulated data.Multivariate Behavioral Research,17,193-219.
  20. Hatcher, L.(1994).A step-by-step approach to using the SAS system for factor analysis and structural equation modeling.Cary, NC:SAS Institute.
  21. Hubbard, R.,Allen, S. J.(1987).A cautionary note on the use of principal components analysis: Supportive empirical evidence.Sociological Methods and Research,16(2),310-308.
  22. Jackson, J. F.(1991).A user`s guide to principal components.New York:John Wiley & Sons.
  23. Joreskog, K. G.,Sorbom, F.(1979).Advances in factor analysis and structural equation models.Cambridge, MA:Abt.
  24. Lee, H. B.,Comrey, A. L.(1979).Distortions in a commonly used factor analysis procedure.Multivariate Behavioral Research,14,301-321.
  25. Loehlin, J. C.(1990).Component analysis versus common factor analysis: A ease of disputed authorship.Multivariate Behavioral Research,25(1),29-31.
  26. MacCallum, R.(1983).A comparison of factor analysis program in SPSS, BMDP, and SAS.Psychmetrika,48(2),223-231.
  27. McArdle, J. J.(1990).Principles versus principals of structural factor analysis.Multivariate Behavioral Research,25(1),81-87.
  28. Mulaik, S. A.(1990).Blurring the distinctions between component analysis and common factor analysis.Multivariate Behavioral Research,25(1),53-59.
  29. Nunnally, J. C.,Bernstein, I. H.(1994).Psychometric theory.New York:McGraw-Hill.
  30. Reise, S. P.,Waller, N. G.,Comrey, A. L.(2000).Factor analysis and scale revision.Psychologyical Assessment,12(3),287-297.
  31. Sharma, S.(1996).Applied multivariate techniques.New York:John Wiley & Sons.
  32. Snook, S. C.,Gorsuch, R. L.(1989).Component analysis versus common factor analysis: A Monte Carlo study.Psychological Bulletin,106(1),148-154.
  33. Tzeng, O. S.(1992).On reliability and nuber of principal components jojinder with Cliff and Kaiser.Perceptual and Motor Skill,75,929-930.
  34. Velicer, W. F.,Jackson, D. N.(1990).Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure.Multivariate Behavioral Research,25(1),1-28.
  35. Velicer, W. F.,Jackson, D. N.(1990).Component analysis versus common factor analysis: Some further observations.Multivariate Behavioral Research,25(1),97-114.
  36. Velicer, W. F.,Peacock, A. C.,Jackson, D. N.(1982).Aa comparison of component and factor pattern: A Monte Carlo approach.Multivariate Behavioral Research,17,371-388.
  37. Widaman, K. F.(1993).Common factor analysis versus principal component analysis: Differential bias in representing model parameters?.Multivariate Behavioral Research,28(3),263-311.
  38. Widaman, K. F.(1990).Bias in pattern Loadings represented by common factor analysis and component analysis.Multivariate Behavioral Research,25(1),89-95.
  39. Wilkinson, L.(1989).A cautionary note on the use of factor analysis: A response to Borgatta, Kercher, and Stull, and Hubbard and Allen.Sociological Methods and Research,17(4),449-459.
  40. Wood, J. M.,Tataryn, D. J.,Gorsuch, R. L.(1996).Effects of under-and overextraction on principal axis factor analysis varimax rotation.Psychometrical Methods,1(4),354-365.
  41. Zwick, W. R.,Velicer, W. F.(1986).A comparison of five rules for determining the number of factors to retain.Psychological Bulletin,99,432-442.
  42. Zwick, W. R.,Velicer, W. F.(1982).Factors influencing four rules for determining the number of components to retain.Multivariate Behavioral Research,17,253-269.
  43. 林清山(1990)。多變項分析統計法。台北:東華書局。
  44. 劉清芬(1990)。碩士論文(碩士論文)。國立高雄師範大學教育系。
被引用次数
  1. Jenn Tang,Hung-Ju Chen,De-Piao Tang(2021)。The Study of Q Method to Explore the Types of Career Choice Motivation for Entrepreneurs -Take the Internet-based Business as an Example。企業管理學報,46(2),1-32。
  2. 戴遠成、劉有德(2007)。練習與工作限制對動態平衡姿勢控制的影響。高雄師大學報,22(3),23-38。
  3. 許碩芳,王天津(2012).Chinese Consumer Attitude towards Nutraceuticals.亞太經濟管理評論,15(2),1-20.
  4. 黃財尉(2003)。共同因素分析與主成份分析之比較。彰化師大輔導學報,25,63-85。
  5. 黃建文、陳品儀(2016)。建構高職美髮教師教學品質量表。教育理論與實踐學刊,33,141-163。
  6. 李隆盛、方瑀紳(2014)。數位學習平臺「第二生命」(Second Life)研究的知識結構與發展趨勢。科學教育學刊,22(4),331-362。
  7. 劉荐宏,曾永清(2019)。大學生理財態度與理財意向之相關研究:以國立臺灣師範大學之大學生為例。學生事務與輔導,58(1),30-52。
  8. 歐陽金樹、林本源(2005)。國內體育測驗應用因素分析之初步探究。中華體育季刊,19(2),100-106。
  9. 王全興(2013)。教育部精進課堂教學計畫的規劃與實施之探討─以數學領域為例。教育理論與實踐學刊,27,1-33。
  10. 吳勁甫(2007)。競值架構應用在國民小學校長領導行為之衡量。學校行政,52,163-192。
  11. 謝美娥(2013)。從退休的規劃、老化適應理論、自我知覺與生命意義探討退休老人的生活品質。東吳社會工作學報,25,35-70。
  12. 葉連祺(2018)。教育行政學位論文應用計量分析方法改善及相關量化分析發展。學校行政,116,147-211。
  13. 張俊彥,洪詩涵,周宛俞(2020)。傳統環境氣:以人體為「氣感應」探討健康景觀特徵。戶外遊憩研究,33(4),23-49。
  14. 周穎(2017)。社群媒體中的自我主體性與被動性—以Facebook為例。文化創意產業研究學報,7(4),111-117。
  15. (2016)。高級中等學校校長正向領導量表之發展與運用。教育與心理研究,39(4),29-59。
  16. (2021)。以機器學習偵測異常狀態:龍井太陽能發電場案例。臺灣能源期刊,8(2),159-182。