题名

神經科學建模歷程的多元知識價值

并列篇名

Pluralistic Epistemic Values in Neuroscientific Modeling

DOI

10.6464/TJSSTM.202204_(34).0004

作者

嚴如玉(Karen YAN)

关键词

神經科學模型 ; 正則模型 ; 機制科學說明 ; 建模歷程 ; 知識價值 ; neuroscientific model ; canonical model ; mechanistic explanation ; modeling process ; epistemic value

期刊名称

科技醫療與社會

卷期/出版年月

34期(2022 / 04 / 01)

页次

103 - 140

内容语文

繁體中文

中文摘要

近二十年來,神經科學哲學家習於用科學說明的知識價值來評價神經科學模型,並分別發展出機制說明論與非機制說明論的觀點。這兩個觀點各自闡述了何謂科學說明,以及如何使用科學說明的知識標準來評價一個神經科學模型。本文將以神經科學中的正則模型為案例研究,並論證既有的(非)機制說明論架構過度專注於分析模型物件本身的表徵內容,而較不重視模型的建模歷程以及建模者的知識態度,因而忽略了一些在建模過程中,不屬於機制說明與非機制說明這兩種科學說明的知識價值。本文將重構正則模型的建模歷程與相關建模者的知識態度,並藉此主張,建模者在不同的建模脈絡,可以對同一類但不同個例的正則模型,採用不同的知識價值來評價模型的知識品質。此外,本文將進一步指出,以建模歷程與建模知識態度的分析架構來處理神經科學建模實作,不僅能夠同時容納機制說明與非機制說明的觀點,也能捕捉到兩方觀點所遺漏的建模知識價值。

英文摘要

Philosophers of neuroscience have been employing scientific explanation as an epistemic value to evaluate neuroscientific models for the past twenty years. Consequently, they have developed mechanistic and non-mechanistic accounts of neuroscientific explanation. These two types of accounts explicate how to use a specific kind of explanatory value to evaluate the epistemic value of neuroscientific models. This paper presents a case study involving the canonical models from mathematical and computational neuroscience. This case study will show that the above mechanistic and non-mechanistic framework overly focuses on analyzing neuroscientific models as objects with representational contents. As a consequence, it pays less attention to the process of modeling and the epistemic attitudes of modelers; moreover, it can miss some important epistemic values used by modelers. By reconstructing their modeling process, I will identify the relevant modelers' epistemic attitudes and argue that these modelers use different kinds of epistemic values to evaluate the same type of canonical models. Furthermore, among them, one epistemic value is not captured by the relevant mechanistic and non-mechanistic accounts. I develop a processual framework that centers on the modeling process and modelers' epistemic attitudes. This process framework is better because it it accommodates both the mechanistic and non-mechanistic accounts of neuroscientific explanation regarding the canonical model in addition to capturing what both accounts leave out.

主题分类 人文學 > 人文學綜合
醫藥衛生 > 醫藥衛生綜合
醫藥衛生 > 醫藥總論
醫藥衛生 > 基礎醫學
醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
社會科學 > 社會科學綜合
参考文献
  1. 陳思廷(2009)。遊走於理論與實情之間:一項經濟模型操作的案例研究。科技、醫療與社會,9,57-121。
    連結:
  2. 陳瑞麟(2009)。孟德爾究竟發現了什麼?一個實驗發現的典型模式。科技、醫療與社會,9,123-171。
    連結:
  3. 趙相科(2009)。朝向與超越拉卡托斯:當代經濟哲學發展的回顧與展望。科技、醫療與社會,9,19-55。
    連結:
  4. Arbib, M. A.(ed.),Arbib, P. H.(ed.)(2003).The Handbook of Brain Theory and Neural Networks.The MIT Press.
  5. Batterman, Robert W.(2002).Asymptotics and the Role of Minimal Models.The British Journal for the Philosophy of Science,53(1),21-38.
  6. Batterman, Robert W.,Rice, Collin C.(2014).Minimal Model Explanations.Philosophy of Science,81(3),349-376.
  7. Bean, Bruce P.(2007).The Action Potential in Mammalian Central Neurons.Nature Reviews. Neuroscience,8(6),451-465.
  8. Bechtel, William,Abrahamsen, Adele(2013).Thinking Dynamically about Biological Mechanisms: Networks of Coupled Oscillators.Foundations of Science,18(4),707-723.
  9. Bechtel, William,Abrahamsen, Adele(2010).Dynamic Mechanistic Explanation: Computational Modeling of Circadian Rhythms as an Exemplar for Cognitive Science.Studies in History and Philosophy of Science Part A,41(3),321-333.
  10. Bechtel, William,Richardson, Robert C.(2010).Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.MIT Press.
  11. Brigandt, Ingo(2013).Systems Biology and the Integration of Mechanistic Explanation and Mathematical Explanation.Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,44(4),477-492.
  12. Cauli, B.,Audinat, Etienne,Lambolez, Bertrand,Angulo, Maria Cecilia,Ropert, Nicole,Tsuzuki, Keisuke,Hestrin, Shaul,Rossier, Jean(1997).Molecular and Physiological Diversity of Cortical Nonpyramidal Cells.The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,17(10),3894-3906.
  13. Chemero, Anthony,Silberstein, Michael(2008).After the Philosophy of Mind: Replacing Scholasticism with Science.Philosophy of Science,75(1),1-27.
  14. Chirimuuta, Mazviita(2018).Explanation in Computational Neuroscience: Causal and Non-Causal.The British Journal for the Philosophy of Science,69(3),849-880.
  15. Chirimuuta, Mazviita(2014).Minimal Models and Canonical Neural Computations: The Distinctness of Computational Explanation in Neuroscience.Synthese,191(2),127-153.
  16. Connor, John A.(1975).Neural Repetitive Firing: A Comparative Study of Membrane Properties of Crustacean Walking Leg Axons.Journal of Neurophysiology,38(4),922-932.
  17. Craver, Carl F.(2007).Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience.Oxford:Oxford University Press.
  18. Ermentrout, G. B.,Kopell, N.(1986).Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation.SIAM Journal on Applied Mathematics,46(2),233-253.
  19. Gelder, Tim van,Port, Robert(1995).Mind as Motion: Explorations in the Dynamics of Cognition.Cambridge, MA:The MIT Press.
  20. Gervais, Raoul(2014).Mechanistic and Non-Mechanistic Varieties of Dynamical Models in Cognitive Science: Explanatory Power, Understanding, and the "Mere Description" Worry.Synthese,192(1),43-66.
  21. Glennan, Stuart S.(1996).Mechanisms and the Nature of Causation.Erkenntnis,44(1),49-71.
  22. Hasselmo, Michael E.,Shay, Christopher F.(2014).Grid Cell Firing Patterns May Arise from Feedback Interaction between Intrinsic Rebound Spiking and Transverse Traveling Waves with Multiple Heading Angles.Frontiers in Systems Neuroscience,8,201.
  23. He, Biyu J.(2014).Scale-Free Brain Activity: Past, Present and Future.Trends in Cognitive Sciences,18(9),480-487.
  24. Hodgkin, A. L. (1948). The Local Electric Changes Associated with Repetitive Action in a Non-Medullated Axon. The Journal of Physiology 107(2): 165-181.
  25. Hoppensteadt, Frank C.,Izhikevich, Eugene M.(1997).Weakly Connected Neural Networks.New York, NY:Springer.
  26. Issad, Tarik,Malaterre, Christophe(2015).Are Dynamic Mechanistic Explanations Still Mechanistic?.Explanation in Biology, History, Philosophy and Theory of the Life Sciences,Dordrecht:
  27. Izhikevich, Eugene M.(2007).Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.Cambridge, Mass.:The MIT Press.
  28. Kaplan, David M.,Bechtel, William(2011).Dynamical Models: An Alternative or Complement to Mechanistic Explanations?.Topics in Cognitive Science,3(2),438-444.
  29. Kaplan, David Michael(2015).Moving Parts: The Natural Alliance between Dynamical and Mechanistic Modeling Approaches.Biology & Philosophy,30(6),757-786.
  30. Kaplan, David Michael(2011).Explanation and Description in Computational Neuroscience.Synthese,183(3),339-373.
  31. Kaplan, David Michael,Craver, Carl F.(2011).The Explanatory Force of Dynamical and Mathematical Models in Neuroscience: A Mechanistic Perspective.Philosophy of Science,78(4),601-627.
  32. Levy, Arnon,Bechtel, William(2013).Abstraction and the Organization of Mechanisms.Philosophy of Science,80(2),241-261.
  33. Machamer, Peter K.,Darden, Lindley,Craver, Carl F.(2000).Thinking about Mechanisms.Philosophy of Science,67(1),1-25.
  34. Massimi, Michela(2018).Four Kinds of Perspectival Truth.Philosophy and Phenomenological Research,96(2),342-359.
  35. Matthiessen, Dana(2015).Mechanistic Explanation in Systems Biology: Cellular Networks.The British Journal for the Philosophy of Science,68(1),1-25.
  36. Povich, Mark(2015).Mechanisms and Model-Based Functional Magnetic Resonance Imaging.Philosophy of Science,82(5),1035-1046.
  37. Raichle, Marcus E.(2010).Two Views of Brain Function.Trends in Cognitive Sciences,14(4),180-190.
  38. Raichle, Marcus E.,MacLeod, Ann Mary,Snyder, Abraham Z.,Powers, William J.,Gusnard, Debra A.,Shulman, Gordon L.(2001).A Default Mode of Brain Function.Proceedings of the National Academy of Sciences of the United States of America,98(2),676-682.
  39. Rinzel, J.,Ermentrout, B.(1989).Analysis of Neural Excitability and Oscillations.Methods in Neuronal Modelling: From Synapses to Networks,Cambridge, MA:
  40. Ross, Lauren N.(2015).Dynamical Models and Explanation in Neuroscience.Philosophy of Science,82(1),32-54.
  41. Shay, Christopher F.,Ferrante, Michele,Chapman, G. William,Hasselmo, Michael E.(2016).Rebound Spiking in Layer II Medial Entorhinal Cortex Stellate Cells: Possible Mechanism of Grid Cell Function.Neurobiology of Learning and Memory,129,83-98.
  42. Tateno, T.,Harsch, A.,Robinson, H. P. C.(2004).Threshold Firing Frequency-Current Relationships of Neurons in Rat Somatosensory Cortex: Type 1 and Type 2 Dynamics.Journal of Neurophysiology,92(4),2283-2294.
  43. Vacher, Helene,Mohapatra, Durga P.,Trimmer, James S.(2008).Localization and Targeting of Voltage-Dependent Ion Channels in Mammalian Central Neurons.Physiological Reviews,88(4),1407-1447.
  44. Weiskopf, Daniel A.(2011).Models and Mechanisms in Psychological Explanation.Synthese,183(3),313-3138.
  45. Woodward, James(2003).Making Things Happen: A Theory of Causal Explanation.New York:Oxford University Press.
  46. Zednik, Carlos(2011).The Nature of Dynamical Explanation.Philosophy of Science,78(2),238-263.
  47. 葉筱凡( 2020),〈 生物學中的機制 〉,見王一奇(編),《華文哲學百科》( 2020 版本 )。http://mephilosophy.ccu.edu.tw/entry.php?entry_name=生物學中的機制(檢索日期:2021 年9 月1 日 )。