题名

資源限制下的週期性需求存貨模型之研究

并列篇名

On the Cycle Demand Inventory Models with Resource Constraints

DOI

10.6295/TAMJ.2003.0302.02

作者

張錦特(Ching-Ter Chang);羅子芸(Tzu-Yun Lo)

关键词

經濟訂購量 ; 週期性需求 ; 混合整數 ; 資源限制 ; EOQ ; Cycle demand ; Mixed integer ; Resource constraints

期刊名称

台灣管理學刊

卷期/出版年月

3卷2期(2003 / 08 / 01)

页次

29 - 39

内容语文

繁體中文

中文摘要

本文提出一個較精確的存貨模型,來處理資源限制下週期性需求的存貨問題。此外,為達到極小化總訂購成本及總持有成本,本模型利用混合整數規劃技巧提供一個簡單求解方法,可同時求得最佳訂購次數、訂購點及每次訂購數量。最後,透過範例加以驗證所提之模型具高度的實用性。

英文摘要

This paper derives a new exact method for cycle demand inventory models with resource constraints. In order to minimize total ordering and holding costs, a simple solution model using mixed integer programming techniques is presented to determine the optimal solution of the number of orders and timing of replenishment points, and quantity to be ordered at each replenishment. Examples are also included in this paper to show the usefulness of the proposed method.

主题分类 社會科學 > 管理學
参考文献
  1. Barbosa, L. C.,M. Friedman(1978).Deterministic inventory lot-size models-a general law.Management Science.
  2. Chakrabarti, T.,Chaudhuri, K. S.(1997).An EOQ model for deteriorating items with a linear trend in demand and shortage in all cycles.International Journal of Production Economics,49,205-213.
  3. Chang, C.-T.(2000).An efficient linearization approach for mixed-integer programs.European Journal of Operational Research,123,205-213.
  4. Chang, C.-T.,Chang, S.-C.(2001).On the inventory model with variable lead time and price-quantity discount.Journal of Operational Research Society,55,1151-1158.
  5. Chung, K.-J.,Tsai, S.-F.(2001).Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value.Computers & Operations Research,28,915-934.
  6. Dave, U.(1989).A deterministic lot-size inventory model with shortage and a linear trend in demand.Naval Research Logistics,36,507-514.
  7. Deb, M.,Chaudhuri, K.(1987).A note on the heuristic for replenishment of trended inventories considering shortages.Journal of Operational Research Society,38,458-463.
  8. Donalson, W. A.(1977).Inventory replenishment policy for a linear trend in demand : An analytic solution.Journal of Operational Research Society,663-670.
  9. Klein, W. K. et al.(1998).Effects of discounting and demand rate variability on the EOQ.International Journal of Production Economics,54,173-192.
  10. Li, H.-L.,Chang, C.-T.(1998).An approximate approach of global optimization for polynomial programming problems.European Journal of Operational Research,107,625-632.
  11. Resh, M. et al.(1976).On a general solution of the deterministic lot-size problem with time-proportional demand.Operational Research,24,718-725.
  12. Ritchie, E.(1984).The EOQ for linear increasing demand: A simple optimal solution.Journal of Operational Research Society,35,949-952.
  13. Schrage, L.(2000).LINGO 4.0.LINDO System, Inc.
  14. Silver, E. A.(1979).A simple inventory replenishment rule for a linear trend in demand.Journal of Operational Research Society,30,71-75.
  15. Sliver, E. A.,Meal, H. C.(1973).A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate discrete opportunities for replenishment.Production and Inventory Management Journal,14,64-74.
  16. Teng, J.-T.(1996).A deterministic inventory replenishment model with a linear trend in demand.Operational Research Letters,19,33-41.
  17. Yang, J et al.(1999).Comparison of several heuristics using an analytic procedure for replenishment with non-linear increasing demand.International Journal of Production Economics,58,49-55.
  18. Zhao, G..Q. et al.(2001).Heuristics for replenishment with linear decreasing demand.International Journal of Production Economics,69,339-345.