题名

模糊迴歸與利率期限結構估計

并列篇名

Estimating the Term Structure of Interest Rates Based on the Fuzzy Regression Approach

DOI

10.6295/TAMJ.2008.0801.04

作者

周建新(Jian-Hsin Chou);陳振宇(Zhen-Yu Chen);黃彥騰(Yeng-Teng Huang)

关键词

分段三次方指數樣條函數 ; 指數多項式函數 ; 利率期限結構 ; 模糊迴歸法 ; piece-wise cubic exponential spline ; exponential polynomial function ; term structure of interest rates ; fuzzy regression Method

期刊名称

台灣管理學刊

卷期/出版年月

8卷1期(2008 / 02 / 01)

页次

73 - 93

内容语文

繁體中文

中文摘要

本文以Vasicek and Fong (1982)所提出的分段三次方指數樣條函數與修正之McCulloch (1975)指數多項式函數,來建構台灣公債市場之利率期限結構,並同時比較前述模型在配適能力的優劣。實證結果發現,分段三次方指數樣條函數不論在模型之精確度與平滑度方面,均優於修正之指數多項式函數。此外,為使估計之利率期限結構模型能充分反映市場所呈現的資訊,本文進一步運用De Andrés and Ternceño (2003)提出之模糊迴歸法,針對配適能力較佳之分段三次方指數樣條函數模型進行模糊化操作。此方法最大優點在於能對利率之不確定性加以量化,以建構利率期限結構的區間範圍,進而反映市場參與者對於未來利率走勢的預期。綜而言之,相較於傳統利率期限結構估計模型,模糊迴歸法能提供較佳的彈性於處理利率不確定性的問題。

英文摘要

This paper employs the piece-wise exponential spline function defined by Vasicek and Fong (1982), and the modified exponential polynomial function originally proposed by McCulloch (1975) to fit the term structure of interest rates in Taiwan Government bond market. The empirical results indicate that the piece-wise exponential spline function has better fitting performance in both accuracy and smoothness. In addition, to sufficiently reflect all information in bond market, this paper uses the fuzzy regression methods proposed by De Andrés and Ternceño (2003) to fuzzify the term structure of interest rates estimated by the piece-wise exponential spline function described above. The main advantage of this approach is that it enables to quantify the interest rates uncertainty and to set a range of term structure movements. Thus, it can help to reflect the anticipation of future interest rates trend for all market participator. Comparing with traditional term structure fitting models, it could provide a more flexible way to deal with the interest rates uncertainty.

主题分类 社會科學 > 管理學
参考文献
  1. 謝承熹(2000)。以分段三次方指數函數配適台灣公債市場之利率期限結構:線性最適化與非線性最適化之比較。中國財務學刊,8(8),25-47。
    連結:
  2. Allen, D. E.,L. C. Thomas,H. Zheng(2000).Stripping Coupons with Linear Programming.Journal of Fixed Income,10(2),80-87.
  3. Bliss, R. R.(1997).Testing Term Structure Estimation Methods.Advances in Futures and Options Research,9,197-231.
  4. Brennan, M. J.,E. S. Schwartz(1979).A Continuous-Time Approach to the Pricing of Bonds.Journal of Banking and Finance,3(2),133-156.
  5. Buckley, J. J.,Y. Qu(1990).Solving Linear and Quadratic Fuzzy Equations.Fuzzy Sets and Systems,38,43-59.
  6. Cox, J. C.,J. F. Ingersoll,S. A. Ross(1985).A Theory of the Terms Structure of Interest Rate.Econometrica,53(2),385-407.
  7. De Andres, J.,A. Ternceno(2003).Estimating a Fuzzy Term Structure of Interest lates for Fuzzy Financial Pricing by Using Fuzzy Regression Methods.Fuzzy Sets and Systems,139,313-331.
  8. De Andres, J.,A. Ternceno(2003).Estimating a Fuzzy Term Structure of Interest Rates Using Fuzzy Regression Techniques.European Journal of Operational Research,154,804-818.
  9. Dothan, L. U.(1978).On the Term Structure of Interest Rates.Journal of Financial Economics,6,59-69.
  10. Dubois, D.,H. Prade(1993).Fuzzy Numbers: an Overview.Fuzzy Sets for Intelligent Systems.
  11. Eom, Y. H.,M. G. Subrahmanyam,J. Uno(1998).Coupon Effects and the Pricing of Japanese Government Bonds: An Empirical Analysis.Journal of Fixed Income,8,69-86.
  12. Fisher, M.,D. Nychka,D. Zervos(1995).Working Paper95-1, Finance and Economies Discussion Series, Federal Reserve BoardWorking Paper95-1, Finance and Economies Discussion Series, Federal Reserve Board,未出版
  13. Kaufmann, A.,M. M. Gupta(1985).Introduction to Fuzzy Arithmetic.New York:Van Nostrand Reinhold.
  14. Langetieg, T. C.,J. S. Smoot(1989).Estimation of the Term Structure of Interest Rates.Research in Financial Services: Private and Public Policy,1,181-222.
  15. Lin, B. H.(2002).Fitting the Term Structure of Interest Rates Using B-Spline: the Case of Taiwanese Government Bonds.Applied Financial Economics,12,55-75.
  16. Mastronikola, K.(1991).Yield Curves for Gilt-Edged Stocks: A New Model.Bank of England Discussion Paper (Technical Series),December,49.
  17. McCulloch, J. H.(1971).Measure the Term Structure of Interest Rates.Journal of Business,19-31.
  18. McCulloch, J. H.(1975).The Tax-Adjusted Yield Curve.Journal of Finance,30(3),811-830.
  19. Nelson, C. R.,A. F. Siegel(1987).Parsimonious Modeling of Yield Curves.Journal of Business,60(4),473-489.
  20. Pham, T. M.(1998).Estimation of Term Structure of Interest Rates : an International Perspective.Journal of Multinational Financial Management,8,265-283.
  21. Schaefer, S. M.,E. S. Schwartz(1987).Time Dependent Variance and the Pricing of Bond Options.Journal of Finance,42(5),1113-1128.
  22. Shea, G. S.(1984).Pitfalls in Smoothing Interest Rate Term Structure Data: Equilibrium Models and Spline Approximation.Journal of Financial and Quantitative Analysis,19,253-269.
  23. Shea, G. S.(1985).Interest Rate Term Structure Estimation with Exponential Splines: A Note.The Journal of Finance,6(1),319-325.
  24. Steeley, J. M.(1991).Estimating the Gilt-Edged Term Structure: Basis Splines and Confidence Intervals.Journal of Business Finance andAccounting,18,513-529.
  25. Subramanian, K. V.(2001).Term Structure Estimation in Illiquid Markets.Journal of Fixed Income,11(2),77-86.
  26. Vasicek, O. A.(1977).An Equilibrium Characterization of Term Structure.Journal of Financial Economics,5(2),177-188.
  27. Vasicek, O. A.,H. G. Fong(1982).Term Structure Modeling Using Exponential Splines.Journal of Finance,37(2),339-348.
  28. Waggoner, O. F.(1997).Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices.Federal Reserve Bank of Atlanta, Working Paper.
  29. 李桐豪(2001)。債券市場發展對貨幣政策之影響。中央銀行季刊,23(1),23-45。
  30. 周建新、于鴻福、胡德榮(2007)。利率期限結構估計模型在台灣公債市場之配適能力比較。經濟與管理論叢,4(1),35-62。
  31. 周建新、于鴻福、張千雲(2003)。利率期限結構估計模型之實證研究。管理學報,20(4),767-796。
  32. 周建新、于鴻福、張千雲(2003)。以線性規劃法估計台灣公債市場利率期限結構之實證研究。管理科學研究,1(1),31-47。
  33. 陳美娥(2001)。碩士論文(碩士論文)。國立台灣科技大學企業管理研究所。
  34. 蔣松原(2000)。建構台灣公債市場殖利率曲線。貨幣觀測與信用評,22,99-119。