题名

模糊類神經多項參數建構之預測模式及PSO-RLSE演算法於股市投資策略之研究

并列篇名

Prediction Model of Multiple Fuzzy Neural Parameter on PSO-RLSE Algorithm in Stock Market Investment Strategy

DOI

10.6295/TAMJ.202002_20(1).0002

作者

侯夆霖(Fenglin Hou);李俊賢(Chunshien Li)

关键词

類神經網路 ; 模糊類神經模型 ; 粒子群演算法 ; artificial neural networks ; fuzzy-neural system ; particle swarm optimization

期刊名称

台灣管理學刊

卷期/出版年月

20卷1期(2020 / 02 / 01)

页次

23 - 75

内容语文

繁體中文

中文摘要

大數據時代中影響股市因素眾多使股價預測變得困難。研究目的希望幫助股市投資者採適當策略。通常傳統模型僅用不多的變量預測第二天收盤價,但是模型當用多種變量來改善效能。本研究有五種不同變量用於模型輸入。我們提的模型是一種結合Takagi-Sugeno模糊模型與類神經網絡的模糊神經系統。我們用PSO-RLSE演算法優化所提模型參數,此法結合粒子群演算法與遞歸最小平方演算法。三個實驗使用多種實際數據,實驗結果與文獻比較,結果表明本研究法具有良好的表現。

英文摘要

In the era of big data, various factors affecting the stock market make stock forecasting difficult. The goal of the study hopes to help decision makers take appropriate strategy in stock investments. In most traditional models, one or few variables are usually used to predict the closing stock price of next day. However, a forecasting model should use various variables to improve the forecast. In this study, five different variables are used as inputs to the proposed model. The proposed model is a neuro-fuzzy system (NFS) combining a Takagi-Sugeno fuzzy system with a neural network, whose performance is compared with that of traditional neural network. For parameter learning, a PSO-RLSE composite algorithm, combining the particle swarm optimization (PSO) with the recursive least squares estimator (RLSE), is used to optimizing the parameters of the proposed model. Several real-world data sets have been used to validate the model's efficacy in three experiments. The experimental results have been shown and compared with the previous literature. The results have indicated that the proposed approach has good performancei n time series prediction.

主题分类 社會科學 > 管理學
参考文献
  1. Basu, S.(1977).Investment performance of common stocks in relation to their price‐earnings ratios: A test of the efficient market hypothesis.The Journal of Finance,32,663-682.
  2. Billah, M.,Waheed, S.,Hanifa, A.(2015).Predicting closing stock price using Artificial Neural Network and adaptive neuro fuzzy inference system (ANFIS): The case of the Dhaka stock exchange.International Journal of Computer Applications,129(11),1-5.
  3. Bing, Y.,Hao, J. K.,Zhang, S. C.(2012).Stock market prediction using artificial neural networks.Advanced Engineering Forum,6-7,1055-1060.
  4. Bollen, J.,Mao, H.,Zeng, X.(2011).Twitter mood predicts the stock market.Journal of Computational Science,2,1-8.
  5. Bollerslev, T.(1986).Generalized autoregressive conditional heteroscedasticity.Journal of Econometrics,31,307-327.
  6. Boyacioglu, M. A.,Avci, D.(2010).An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange.Expert Systems with Applications,37,7908-7912.
  7. Chang, J.-R.,Wei, L. Y.,Cheng, C. H.(2011).A hybrid ANFIS model based on AR and volatility for TAIEX forecasting.Applied Soft Computing,11,1388-1395.
  8. Chen, S. M.(1996).Forecasting enrollments based on fuzzy time series.Fuzzy Sets and Systems,81,311-319.
  9. Chen, T.-L.,Cheng, C.-H.,Teoh, H.-J.(2008).High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets.Physica A: Statistical Mechanics and Its Applications,387,876-888.
  10. Cheng, C.-H.,Wei, L.-Y.,Chen, Y.-S.(2009).Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting.Neurocomputing,72,3462-3468.
  11. Cheng, C.-H.,Yang, J.-H.(2018).Fuzzy time-series model based on rough set rule induction for forecasting stock price.Neurocomputing,302,33-45.
  12. Dickinson, D. G.(2000).Stock market integration and macroeconomic fundamentals: An empirical analysis, 1980–95.Applied Financial Economics,10,261-276.
  13. Engle, R. F.(1982).Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.Econometrica,50,987-1007.
  14. Haidt, J.(2007).The new synthesis in moral psychology.Science,316,998-1002.
  15. Hirshleifer, D. A.(2015).Behavioral finance.Annual Review of Financial Economics,7,133-159.
  16. Huarng, K.(2001).Effective lengths of intervals to improve forecasting in fuzzy time series.Fuzzy Sets and Systems,123,387-394.
  17. Huarng, K.,Yu, T. H.-K.(2006).Ratio-based lengths of intervals to improve fuzzy time series forecasting.IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),36,328-340.
  18. Jang, J.-S. R.(1993).ANFIS: Adaptive-network-based fuzzy inference system.IEEE Transactions on Systems, Man, and Cybernetics,23,665-685.
  19. Kim, K.-J.(2003).Financial time series forecasting using support vector machines.Neurocomputing,55,307-319.
  20. Kim, K.-J.,Han, I.(2000).Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index.Expert Systems with Applications,19,125-132.
  21. Kim, M.-J.,Min, S.-H.,Han, I.(2006).An evolutionary approach to the combination of multiple classifiers to predict a stock price index.Expert Systems with Applications,31,241-247.
  22. Kimoto, T.,Asakawa, K.,Yoda, M.,Takeoka, M.(1990).Stock market prediction system with modular neural networks.1990 IJCNN International Joint Conference on Neural Networks,San Diego, CA:
  23. Kuan, C.-M.,Liu, T.(1995).Forecasting exchange rates using feedforward and recurrent neural networks.Journal of Applied Econometrics,10,347-364.
  24. Marshall, B. R.,Cahan, R. H.(2005).Is technical analysis profitable on a stock market which has characteristics that suggest it may be inefficient?.Research in International Business and Finance,19,384-398.
  25. Nikolopoulos, C.,Fellrath, P.(1994).A hybrid expert system for investment advising.Expert Systems,11,245-250.
  26. Roh, T. H.(2007).Forecasting the volatility of stock price index.Expert Systems with Applications,33,916-922.
  27. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by backpropagating errors.Nature,323,533-536.
  28. Schiffmann, W. H.,Geffers, H. W.(1993).Adaptive control of dynamic systems by back propagation networks.Neural Networks,6,517-524.
  29. Schiffmann, W. H.,Joost, M.,Werner, R.(1994).,未出版
  30. Strobach, P.(1990).Linear prediction theory: A mathematical basis for adaptive systems.Berlin, Germany:Springer.
  31. Takagi, T.,Sugeno, M.(1983).Derivation of fuzzy control rules from human operator’s control actions.IFAC Proceedings Volumes,16(13),55-60.
  32. Takagi, T.,Sugeno, M.(1985).Fuzzy identification of systems and its applications to modeling and control.IEEE Transactions on Systems, Man, and Cybernetics,15,116-132.
  33. Thawornwong, S.,Enke, D.(2004).The adaptive selection of financial and economic variables for use with artificial neural networks.Neurocomputing,56,205-232.
  34. Wan, Y.,Si, Y.-W.(2017).Adaptive neuro fuzzy inference system for chart pattern matching in financial time series.Applied Soft Computing,57,1-18.
  35. Wei, L.-Y.(2016).A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting.Applied Soft Computing,42,368-376.
  36. Yu, H.-K.(2005).Weighted fuzzy time series models for TAIEX forecasting.Physica A: Statistical Mechanics and Its Applications,349,609-624.
  37. Yu, H.-K.,Huarng, K. H.(2008).A bivariate fuzzy time series model to forecast the TAIEX.Expert Systems with Applications,34,2945-2952.