题名

深度學習在Smart Beta交易策略之應用

并列篇名

Smart Beta Trading Strategies With Deep Learning

DOI

10.6295/TAMJ.202008_20(2).0004

作者

吳錦文(Chin-Wen Wu);王昭文(Chou-Wen Wang);謝育展(Yu-Chan Hsieh)

关键词

深度學習 ; 多層感知器 ; 卷積類神經網路 ; Smart Beta交易策略 ; deep learning ; multilayer perceptron ; convolutional neural network ; Smart Beta trading strategy

期刊名称

台灣管理學刊

卷期/出版年月

20卷2期(2020 / 08 / 01)

页次

77 - 110

内容语文

繁體中文

中文摘要

本研究使用Smart Beta因子與技術指標作為輸入特徵(features),並搭配深度學習中的多層感知器(multilayer perceptron, MLP)和卷積類神經網路(convolutional neural networks, CNN)來建構Smart Beta交易策略,驗證深度學習在投資交易策略上之效果。運用2007年至2017年的台灣股票資料,透過每季進行模型的更新及訓練,結果發現深度學習Smart Beta交易策略績效表現優於台灣加權指數和運用Asness, Frazzini, and Pedersen(2017)的Smart Beta特徵分數方法建構之投資組合。此外,透過特徵篩選法保留重要輸入特徵,可使深度學習Smart Beta交易策略績效更進一步提升。

英文摘要

Using Smart Beta factors and technical indicators as input features, this paper employs multilayer perceptron (MLP) and convolutional neural networks (CNN) to construct deep learning Smart Beta trading strategies. The frequency of updating and training deep learning model is quarter base from 2007 to 2017. The empirical results demonstrate that the performance of Deep Learning Smart Beta trading strategies is better than the Taiwan Capitalization Weighted Stock Index (TAIEX) and benchmark Smart Beta portfolio based on Asness, Frazzini, and Pedersen (2017). In addition, the refined feature through feature selection processes can further enhance the performance of deep learning Smart Beta trading strategies.

主题分类 社會科學 > 管理學
参考文献
  1. Altman, E. I.(1968).Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.The Journal of Finance,23,589-609.
  2. Amihud, Y.(2002).Illiquidity and stock returns: Cross-section and time-series effects.Journal of Financial Markets,5,31-56.
  3. Asness, C. S., Frazzini, A., & Pedersen, L. H. (2017). Quality minus junk. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2312432
  4. Ball, R.,Gerakos, J.,Linnainmaa, J. T.,Nikolaev, V.(2016).Accruals, cash flows, and operating profitability in the cross section of stock returns.Journal of Financial Economics,121,28-45.
  5. Bhayo, M.-u.-R.,Khan, M. A.,Shaikh, R. S.(2011).An idiosyncratic explanation of earnings-price ratio based on financial statement analysis.International Journal of Business and Social Science,2(9),243-249.
  6. Black, F.,Litterman, R.(1992).Global portfolio optimization.Financial Analysts Journal,48(5),28-43.
  7. Carhart, M. M.(1997).On persistence in mutual fund performance.The Journal of Finance,52,57-82.
  8. Chang, Y. Y.,Faff, R.,Hwang, C.-Y.(2010).Liquidity and stock returns in Japan: New evidence.Pacific-Basin Finance Journal,18,90-115.
  9. Chong, E.,Han, C.,Park, F. C.(2017).Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies.Expert Systems with Applications,83,187-205.
  10. Cready, W.,Lopez, T. J.,Sisneros, C. A.(2010).The persistence and market valuation of recurring nonrecurring items.The Accounting Review,85,1577-1615.
  11. DeMiguel, V.,Garlappi, L.,Uppal, R.(2009).Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?.The Review of Financial Studies,22,1915-1953.
  12. Essaadi, E.,Jouini, J.,Khallouli, W.(2009).The Asian crisis contagion: A dynamic correlation approach analysis.Panoeconomicus,56,241-260.
  13. Fama, E. F.(1970).Efficient capital markets: A review of theory and empirical work.The Journal of Finance,25,383-417.
  14. Fama, E. F.,French, K. R.(2015).A five-factor asset pricing model.Journal of Financial Economics,116,1-22.
  15. Fama, E. F.,French, K. R.(1992).The cross-section of expected stock returns.The Journal of Finance,47,427-465.
  16. Frazzini, A.,Pedersen, L. H.(2014).Betting against beta.Journal of Financial Economics,111,1-25.
  17. Gunduz, H.,Yaslan, Y.,Cataltepe, Z.(2017).Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations.Knowledge-Based Systems,137,138-148.
  18. Han, Y., Zhou, G., & Zhu, Y. (2016). Taming momentum crashes: A simple stop-loss strategy. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2407199
  19. He, K.,Zhang, X.,Ren, S.,Sun, J.(2015).Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),Piscataway, NJ:
  20. Hinton, G. E.,Osindero, S.,Teh, Y.-W.(2006).A fast learning algorithm for deep belief nets.Neural Computation,18,1527-1554.
  21. Hughen, J. C.,Strauss, J.(2017).Portfolio allocations using fundamental ratios: Are profitability measures more effective in selecting firms and sectors?.The Journal of Portfolio Management,43(3),87-101.
  22. Hung, N. H.(2016).Various moving average convergence divergence trading strategies: A comparison.Investment Management and Financial Innovations,13(2),363-369.
  23. Kahneman, D.,Tversky, A.(1979).Prospect theory: An analysis of decision under risk.Econometrica,47(2),263-291.
  24. Kingma, D. P.,Ba, J.(2015).Adam: A method for stochastic optimization.3rd International Conference on Learning Representations,San Diego, CA:
  25. Krizhevsky, A.,Sutskever, I.,Hinton, G. E.(2012).Imagenet classification with deep convolutional neural networks.26th Conference on Neural Information Processing Systems,Lake Tahoe, NV:
  26. Lintner, J.(1965).The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets.The Review of Economics and Statistics,47,13-37.
  27. Marshall, B. R.,Young, M. R.,Rose, L. C.(2006).Candlestick technical trading strategies: Can they create value for investors?.Journal of Banking and Finance,30,2303-2323.
  28. Mossin, J.(1966).Equilibrium in a capital asset market.Econometrica,34,768-783.
  29. Murugan, P.(2017).,未出版
  30. Ratner, M.,Leal, R. P. C.(1999).Tests of technical trading strategies in the emerging equity markets of Latin America and Asia.Journal of Banking & Finance,23,1887-1905.
  31. Rosenblatt, F.(1961).Principles of neurodynamics: Perceptrons and the theory of brain mechanisms.Buffalo, NY:Cornell Aeronautical Laboratory.
  32. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323,533-536.
  33. Sezer, O. B.,Ozbayoglu, A. M.,Dogdu, E.(2017).An artificial neural network-based stock trading system using technical analysis and big data framework.Proceedings of the SouthEast Conference,New York, NY:
  34. Sharpe, W. F.(1964).Capital asset prices: A theory of market equilibrium under conditions of risk.The Journal of Finance,19,425-442.
  35. Sloan, R. G.(1996).Do stock prices fully reflect information in accruals and cash flows about future earnings?.The Accounting review,71,289-315.
  36. Yu, H.,Nartea, G. V.,Gan, C.,Yao, L. J.(2013).Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets.International Review of Economics & Finance,25,356-371.
  37. 陳俊豪(2017)。台北,國立台灣大學經濟學研究所。
  38. 陳鄢貞(2011)。新北,國立台北大學國際財務金融碩士在職專班。
  39. 黃君平(2016)。新竹,國立交通大學資訊管理研究所。
  40. 盧泰源(2016)。高雄,國立中山大學財務管理學系。