题名 |
Numerical Simulation of the Acenaphthylene Compound in an Atmospheric Plasma Reactor to Treat Cooking Fumes |
作者 |
Hung-Chang Chang;Lien-Te Hsieh |
关键词 |
Atmospheric Plasma ; Oil fume ; Acenaphthylene ; CFD ; Air toxic |
期刊名称 |
Aerosol and Air Quality Research |
卷期/出版年月 |
13卷1期(2013 / 02 / 01) |
页次 |
122 - 136 |
内容语文 |
英文 |
英文摘要 |
Acenaphthylene (chemical formula of C12H8, Acpy), also known as cyclopenta[de]naphthalene, is a polycyclic aromatic hydrocarbon (PAH) with 3 aromatic rings. The Acpy compound is a PAH on the Environmental Protection Agency's (EPA's) priority pollutant list. This study presents a simulation of an atmospheric plasma reactor (APR) using a method based on computational fluid dynamics (CFD). A commercial CFD tool was used to solve mass, momentum, and energy equations. The commercial FLUENT code was then used to simulate the Acpy compound using a 3D APR to treat the cooking fume exhaust emitted from a restaurant kitchen. The simulations in this study adopted the APR size and operating parameters from a self-designed atmospheric plasma reactor in a previous study (NSC95-2221-E020-021). An in-house reduced chemical mechanism was coupled with the CFD code for improved computational runtime. The reactivity of the system was considered with the RNG k-ε turbulence model and the classical Eddy Dissipation Concept combustion model. The simulation results were compared with the experimental temperature measurement and the removal efficiency of Acpy. The simulated average removal efficiency of Acpy was 61.3%. |
主题分类 |
工程學 >
市政與環境工程 |