题名

從銷售交易資料探討一般性商品之最適訂購策略

并列篇名

An Optimal Ordering Strategy for General Merchandise under the Observation of Sales Data

DOI

10.6626/MR.2012.11(2).02

作者

黃允成(Yun-Cheng Huang);陳思婷(Sih-Ting Chen);潘信佐(Shin-Tso Pan)

关键词

隨機性需求 ; 前置時間 ; 敏感度分析 ; Stochastic demand ; Lead time ; Sensitivity analysis

期刊名称

管理研究學報

卷期/出版年月

11卷2期(2012 / 05 / 01)

页次

37 - 58

内容语文

繁體中文

中文摘要

本文主要是針對隨機性需求探討一般性商品之最適訂購策略,因為顧客到達時間具隨機性,且購買的商品也為一隨機變數。在一般商品中,銷售可大略分為三種時段:離峰時段、尖峰時段與假日時段,因為不同的商品其需求量亦不相同,所以我們需要收集顧客交易資料之間隔時間,運用統計原理推導商品之需求分配,並建構一存貨管理模型,再根據最佳化與數值分析方法,找出最適訂購量與再訂購點,使總期望存貨成本最小化,並對參數進行敏感度分析。最後,提出三點結論,作為後續研究與實務應用之參考。

英文摘要

The main propose of this article is to establish optimal ordering strategy for general merchandise under the stochastic demand. Because the customer arrival time is random and the purchasing quantity is also a random variable. For some merchandise, its sales conditions can be partitioned into three periods: peak-time period, off-peak-time period and holidays. Because of the demands for different goods are not the same, so we need to collect the interval time between customers and the transaction data, and then we apply the statistical theory to predict the demand and its distribution. In addition, we build up an inventory model and according to the optimization technique and numerical analysis method, the article can find out the optimal ordering quantity and reorder point to minimize the total expected cost. The sensitivity analysis was taken to realize the influence of parameters. Finally, three conclusions are drawn for practical applications and future studies.

主题分类 社會科學 > 管理學
参考文献
  1. Alfares, H. K.(2007).Inventory model with stock-level dependent demand rate and variable holding cost.International Journal of Production Economics,108,259-265.
  2. Ben-Daya, M.,Hariga, M.(2004).Integrated single vendor single buyer model with stochastic demand and variable lead time.International Journal of Production Economics,92(1),75-80.
  3. Ben-Daya, M.,Raouf, A.(1994).Inventory Models Involving Lead Time as Decision Variable.Journal of the Operational Research Society,45(45),579-582.
  4. Brander, P.,Leven, E.,Segerstedt, A.(2005).Lot sizes in a capacity constrained facility - A simulation study of stationary stochastic demand.International Journal of Production Economics,93-94,375-386.
  5. Candace, A. Y.(1987).Planned Lead times for Serial Production Systems.IIE Transactions,19(3),300-307.
  6. Chang, C. T.,Chang, S. C.(2001).On the inventory model with variable lead time and price-quantity discount.Journal of the Operational Research Society,51,1151-1158.
  7. Chen, Kee Kuo,Chang, Ching-Ter(2007).A seasonal demand inventory model with variable lead time and resource constraints.Applied Mathematical Modelling,31,2433-2445.
  8. García-Laguna, J.,San-José, L. A.,Cárdenas-Barrón, L. E.,Sicilia, J.(2010).The integrality of the lot size in the basic EOQ and EPQ models: Applications to other production-inventory models.Applied Mathematics and Computation,216,1660-1672.
  9. Haksever, Cengiz,Moussourakis, John(2005).A model for optimizing multi-product inventory systems with multiple constraints.International Journal of Production Economics,97,18-30.
  10. Hsieh, T. P.,Dye, C. Y.,Ouyang. L. Y.(2010).Optimal lot size for an item with partial backlogging rate when demand is stimulated by inventory above a certain stock level.Mathematical and Computer Modelling,51,13-32.
  11. Lan, Shaw-Ping,Chu, Peter,Chung, Kun-Jen,Wan, Wun-Jung,Lo, Ricky(1999).A simple method to locate the optimal solution of the inventory model with variable lead time.Computers and Operations Research,26(6),599-605.
  12. Liao, C. J.,Shyu, C. H.(1991).An analytical determination of lead time with normal demand.International Journal of Operations and Management,11(9),72-78.
  13. Moon, I.,Choi, S.(1997).Distribution free procedures for make-to-order (MTO), make-in-advance (MIA), and composite policies.International Journal of Production Economics,48,21-28.
  14. Ouyang, L. Y.,Chuang, B. R.(2000).A periodic review inventory model involving variable lead time with a service level constraint.International Journal of Systems Science,31,1209-1215.
  15. Ouyang, L. Y.,Yen, N. C.,Wu, K. S.(1996).Mixture inventory model with backorders and lost sales for variable lead time.Journal of the Operational Research Society,47,829-832.
  16. Pan, C. H.,Hsiao, Y. C.(2001).Inventory models with back-order discounts and variable lead time.International Journal of Systems Science,32,928-929.
  17. Silver, E. A.,Peterson, R.(1985).Note an acquisition policy for a single item multisupplier system.New York:
  18. Tersine, R. J.(1982).Principles of inventory and materials management.New York:
  19. Wu, J. K.,Tsai, H. Y.(2001).Mixture inventory model with back orders and lost sales for variable lead time demand with the mixture of normal distribution.International Journal of Systems Science,32,259-268.
  20. 朱豔芳、林為欽(2004)。以訂購量及前置時間為決策變數之存貨模式研究―需求頻率及需求量分別服從卜瓦松及常態分配。Journal of the Chinese Institute of Industrial Engineers,21(4),384-394。
  21. 林基賢(2007)。雲林縣,國立雲林科技大學工業工程與管理研究所。
  22. 黃允成、蘇琬菁(2009)。屏東縣,國立屏東科技大學工業管理研究所。
被引用次数
  1. 潘柏仲(2017)。運用類神經網路法建立航空安全預測模式。中原大學工業與系統工程學系學位論文。2017。1-77。