题名

LED磊晶MOCVD製程之最佳參數設定

并列篇名

Determination of Optimal Parameter Settings for LED MOCVD Processes

DOI

10.6626/MR.2014.14(2).01

作者

黃宇翔(Yeu-Shiang Huang);呂政冀(Chan-Chi Lu)

关键词

發光二極體 ; 金屬有機物化學氣相沉積製程 ; 實驗設計 ; 反應曲面法 ; LED ; MOCVD ; Design of Experiment ; Response Surface Method

期刊名称

管理研究學報

卷期/出版年月

14卷2期(2014 / 12 / 01)

页次

1 - 30

内容语文

繁體中文

中文摘要

台灣LED產業有完整的上、下游供應鏈,LED廠商為提升競爭力,通常會大舉添購金屬有機物化學氣相沉積(Metal-Organic Chemical Vapor Deposition, MOCVD)機台設備,以大量生產方式提高機台產能,進而增加整體獲利。目前MOCVD薄膜的製程參數調整,是依據工程師經驗採逐一因素實驗法加以調整,但由於影響MOCVD薄膜之物理特性有諸多互相關聯性的製程參數,使得實驗過程變得相當複雜。本研究擬採取部分因子實驗設計和反應曲面法來決定LED磊晶之MOCVD製程最佳參數。使用實驗設計(Design of Experiments, DOE)可同時改變多個自變數特點規劃實驗並以變異數分析找出影響亮度之顯著因子,而應用反應曲面法(Response Surface Methodology, RSM)來評估其主因子及其水準範圍內所呈現的品質特性,可得到製程可能的最佳參數。實驗結果顯示,在P-type超晶格層,鎵流量為4.46 sccm、鎂流量為40 sccm、及通入時間為19.7 sec時,可得到預測最高亮度143.7 mcd,此最佳參數水準組合並經驗證實驗確認。透過此實驗方法,可降低實驗複雜度,俾磊晶工程師能藉以得到執行參數調整的參考方案,據以改善產品之品質。

英文摘要

The LED industry in Taiwan has invested a great amount of capital on the facilities of Metal-Organic Chemical Vapor Deposition (MOCVD) to gain competitive advantages from mass-production. The tuning of the parameter settings of the MOCVD process is often based on sequentially performing one-factor experiments by experienced engineers. However, due to the interactions among the process parameters of the physical characteristics of LED, the experimental process is often very complicated. This study determines the optimal parameter settings of the MOCVD process by using design of experiments (DOE) and the response surface methodology (RSM) where DOE is used to plan a group of experiments in which specified changes are made simultaneously to several process inputs and the RSM is used to investigate the quality characteristics within the range of key factors found in the previous DOE process. Accordingly, the optimal parameter settings which maximize the response can be determined. The predicted optimal parameter settings for p-SLS layer derived from the RSM regression are 4.46 sccm, 40 sccm and 19.7sec for TMGa flow, Cp2Mg flow, and growth time. With this composition, the predicted maximum output luminescence is 143.7 mcd which is justified by a real field practice. The proposed approach provides engineers with information about the parameter settings which can be used to further tune the process parameters.

主题分类 社會科學 > 管理學
参考文献
  1. Alam, A.,Schon, O.,Schineller, B.,Heuken, M.,Jurgensen, H.(2000).MOVPE Growth Optimization Using Computer Supported Design of Experiments.Physica Status Solidi (a),180,109-114.
  2. Amano, H.,Kito, M.,Hiramatsu, K.,Akasaki, I.(1989).P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation.Japanese Journal of Applied Physics,28,L2112.
  3. Amano, H.,Sawaki, N.,Akasaki, I.,Toyoda, I.(1986).Metalorganic Vapor Phaseepitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer.Applied Physics Letters,48,353-355.
  4. Box, G. E. P.,Wilson, K. B.(1951).On the Experimental Attainment of Optimum Condition.Journal of the Royal Statistic Society, Series B,13(1),38-45.
  5. Chen, J. P.,Kim, S. L.,Ting, Y. P.(2003).Optimization of Membrane Physical and Chemical Cleaning by a Statistically Designed Approach.Journal of Membrane Science,219(1-2),27-45.
  6. Grandusky, J. R.,Jamil, M.,Shahedipour-Sandvik, F.(2005).Optimization of the Active Region of InGaN/GaN 405 nm Light Emitting Diodes Using Statistical Design of Experiments for Determination of Interaction Effects.Journal of Vacuum Science & Technology B,23(4),1576-1581.
  7. Hu, R.,Luo, X. B.,Zheng, H.(2012).Hotspot Location Shift in the High Power Phosphor Converted White Light Emitting Diode Package.Japanese Journal of Applied Physics,51,09MK05.
  8. Jang, S. J.,Sheu, J. K.,Tsai, C. M.,Chang, S. J.,Lai, W. C.,Lee, M. L.,Ko, T. K.,Shen, C. F.,Shei, S. C.(2010).Improved Performance of GaN-Based blue LEDs with the InGaN Insertion Layer between the MQW Active Layer and the n-GaN Cladding Layer.IEEE Journal of Quantum Electronics,46(3),513-517.
  9. Kim, K.,Jeon, K. N.(2007).Silicon Delta-Doping Effect on Photoluminescence from InGaN/GaN Multi-Quantum-Well Structures.Japanese Journal of Applied Physics,46(1),131-133.
  10. Kozodoy, P.,Hansen, M.,DenBaars, S. P.,Mishra, U. K.(1999).Enhanced Mg Doping Efficiency in AlGaN/GaN Superlattices.Applied Physics Letters,74(24),3681-3683.
  11. Kumakura, K.,Kobayashi, N.(1999).Increased Electrical Activity of Mg-Acceptors in AlxGa1-xN/GaN Superlattices.Japanese Journal of Applied Physics,38,1012-1014.
  12. Luo, X. B.,Fu, X.,Chen, F.,Zheng, H.(2013).Phosphor Self-Heating in Phosphor converted Light Emitting Diode Packaging.International Journal of Heat and Mass Transfer,58,276-281.
  13. Manasevit, H. M.(1968).Single-Crystal Gallium Arsenide on Insulating Substrates.Applied Physics Letters,12,156-159.
  14. Montgomery, D. C.(2005).Design and Analysis of Experiments.New York:John Wiley &Sons.
  15. Nakamura, S.,Muki, T.,Senoh, M.,Iwasa N.(1992).Thermal Annealing Effects on P-Type Mg-Doped GaN Films.Japanese Journal of Applied Physics,31,L139.
  16. Nakanishi, T.(1981).Growth of High-Purity GaAs Epilayers by MOCVD and Their Applications to Microwave MESFET's.Journal Crystal Growth,50,255-262.
  17. Nataf, G.,Beaumont, B.,Bouille, A.,Haffouz, S.,Vaille, M.,Gibart, P.(1998).Lateral Overgrowth of High Quality GaN Layers on GaN/Al2O3 Patterned Substrates by Halide Vapour-Phase Epitaxy.Journal of Crystal Growth,192(1-2),73-78.
  18. Wu, L. W.,Chang, S. J.,Wen, T. C.,Su, Y. K.(2002).Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes.IEEE Journal of Quantum Electronics,38(5),446-450.
  19. Zhang, B.,Egawa, T.,Ishikawa, H.,Liu, Y.,Jimbo, T.(2004).Thermal Stability of InGaN Multiple-Quantum-Well Light-Emitting Diodes on an AlN/sapphire Template.Japanese Journal of Applied Physics,95(6),3170-3174.
  20. 郭峰鳴(2004)。國立中山大學機械與機電工程研究所。
  21. 黃韋誠(2003)。屏東科技大學食品科學系。