题名

Shewhart、CUSUM與EWMA計數值管制圖之品質偵測能力比較研究

并列篇名

A Comparative Study on Shewhart, CUSUM and EWMA Attribute Control Charts

DOI

10.6626/MR.201712_17.0002

作者

黃允成(Yun-Cheng Huang);林宜蓉(Yi-Rong Lin);張妤宣(Yu-Xuan Zhang)

关键词

Shewhart管制圖 ; CUSUM管制圖 ; EWMA管制圖 ; 平均連串長度(ARL) ; Shewhart ; CUSUM ; EWMA control charts ; Average run length (ARL)

期刊名称

管理研究學報

卷期/出版年月

17卷(2017 / 12 / 01)

页次

43 - 86

内容语文

繁體中文

中文摘要

根據以往研究指出,當製程產生大偏移時,Shewhart管制圖有不錯的偵測效果,但對現今產品設計以高品質為目標而言,大偏移之監測能力已不足以滿足需求,故當製程有微量變異時,應使用EWMA管制圖或CUSUM管制圖來監測製程。當製程品質水準在管制範圍內時,此時希望ARL_0越大越好;反之,當製程品質水準在管制範圍外時,則希望ARL_1越小越好。故本研究將探討Shewhart管制圖、CUSUM管制圖與EWMA管制圖分別在不同的品質特性下,何者管制圖之偵測績效較佳。最後,本文提出7點具體結論供後續研究及實務應用上參考。

英文摘要

Based on literature review, when the process has a large change, Shewhart control chart's detect effects will better than the others. But for today's high-quality products requirement, the detect ability for large changes has been insufficient to meet the demand. Therefore, when the process has a small change, EWMA control chart or CUSUM control chart should be used to monitor the process. When the process is in-control, the average run length is hoped the bigger the better. On the contrary, when the process is out-control, the average run length is hoped the smaller the better. In this paper, we will explore and compare the detecting performance among the Shewhart, CUSUM and EWMA control charts under a variant of quality characteristics. Finally, seven conclusions are drawn for future studies and practical applications.

主题分类 社會科學 > 管理學
参考文献
  1. Wald, A. 1947. Sequential analysis. New York: John Wiley and Sons, Inc.
  2. Abujiya, M. R.,Riaz, M.,Lee M. H.(2016).A new combined Shewhart-cumulative sum S chart for monitoring process standard deviation.Quality and Reliability Engineering International,32(3),1149-1165.
  3. Albin, S. L.,Friedman, D. J.(1989).The impact of clustered defect distributions in IC fabrication.Management Sciences,35(9),1066-1078.
  4. Borror, C. M.,Champ, C. W.,Rigdon, S. E.(1998).Poisson EWMA control charts.Journal of Quality Technology,30(4),352-361.
  5. Brook, D.,Evans, D. A.(1972).An approach to the Probability distribution of cusum run length.Biometrika Trust,59(3),539-549.
  6. Castagliola, P.,Maravelakis, E. P.(2011).A CUSUM control chart for monitoring the variance when parameters are estimated.Journal of Statistical Planning and Inference,141,1463-1478.
  7. Chen, C. W.(2012).Using geometric poisson exponentially weighted moving average control schemes in a compound Poisson production environment.Computers and Industrial Engineering,63,374-381.
  8. de Vargas, Vera do Carmo C.,Lopes, Luis Felipe Dias.,Souza, Adriano Mendonca(2004).Comparative study of the performance of the CUSUM and EWMA control charts.Computers and Industrial Engineering,46,707-724.
  9. Ford, G. R.(1995).Statistical process control utilization in the Austin - San Antonio corridor.Computers and Industrial Engineering,29(1-4),25-29.
  10. Fu, J. C.,Spiringa, F. A.,Xie, H.(2002).On the average run lengths of quality control schemes using a Markov chain approach.Statistics and Probability Letters,56,369-380.
  11. Gan, F. F.(1990).Monitoring Poisson observations using modified exponentially weighted moving average control charts.Communications in Statistics - Simulation and Computation,19(1),103-124.
  12. Gardiner, J. S.(1987).Detecting small shifts in quality levels in a near-zero defect environment for integrated circuits.Seattle, Washington:University of Washington.
  13. Hawkins, D. M.,Wu, Q.(2014).The CUSUM and the EWMA head-to-head.Quality Engineering,26(2),215-222.
  14. Lin, Y. C.,Chou, C. Y.(2007).Non-normality and the variable parameters X control charts.European Journal of Operational Research,176,361-373.
  15. Lucas, J. M.(1985).Counted data CUSUM's.Technometrics,27(2),129-144.
  16. Montgomery, D. C.(2009).Introduction to statistical quality control.New York:John Wiley and Sons.
  17. Page, E. S.(1954).Continuous Inspection Schemes.Biometrika,41,100-115.
  18. Roberts, S. W.(1959).Control chart tests based on geometric moving averages.Technometrics,1(3),239-250.
  19. Runger, G. C.,Willemain, T. R.,Prabhu, S.(1995).Average run lengths for cusum control charts applied to residuals.Communication in Statistics-Theory and Methods,24(1),273-282.
  20. Shamsuzzaman, M.,Khoo, M. B. C.,Haridy, S.,Alsyouf, I.(2016).An optimization design of the combined Shewhart-EWMA control chart.The International Journal of Advanced Manufacturing Technology,86(5-8),1627-1637.
  21. Sherbrooke, C. C.(1968).Discrete compound Poisson process and tables of the geometric Poisson distribution.Naval Research Logistics Quarterly,15,189-203.
  22. Siegmund, D.(1985).Sequential analysis: Tests and confidence intervals.New York:Springer-Verlag, New York, Inc..
  23. Stapper, C. H.(1985).The effects of wafer to wafer defect density variations on integrated circuit defect and fault distribution.IBM Journal of Research Development,29(1),87-97.
  24. White, C. H.,Keats, B. J.,Stanley, J.(1997).Poisson CUSUM versus c chart for defect data.Quality Engineering,9(4),673-679.
  25. Yu, F. J.,Yang, Y. Y.,Wang, M. J.,Wu, Z.(2011).Using EWMA control Schemes for monitoring wafer quality in negative binomial process.Microelectronics Reliability,5,400-405.