题名

Boosting Applied to Classification of Mass Spectral Data

DOI

10.6339/JDS.2003.01(4).173

作者

K. Varmuza;Ping He;Kai-Tai Fang

关键词

Boosting ; data mining ; decision tree ; mass spectra

期刊名称

Journal of Data Science

卷期/出版年月

1卷4期(2003 / 10 / 01)

页次

391 - 404

内容语文

英文

英文摘要

Boosting is a machine learning algorithm that is not well known in chemometrics. We apply boosting tree to the classification of mass spectral data. In the experiment, recognition of 15 chemical substructures from mass spectral data have been taken into account. The performance of boosting is very encouraging. Compared with previous result, boosting significantly improves the accuracy of classifiers based on mass spectra.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計