题名 |
Boiling Points Predictions Study via Dimension Reduction Methods: SIR, PCR and PLSR |
DOI |
10.6339/JDS.2003.01(4).177 |
作者 |
Hong Yin;Yi-Zeng Liang;Qin-Nan Hu |
关键词 |
Cross-validation ; dimension reduction ; partial least squares regression ; principal component regression ; sliced inverse regression |
期刊名称 |
Journal of Data Science |
卷期/出版年月 |
1卷4期(2003 / 10 / 01) |
页次 |
461 - 480 |
内容语文 |
英文 |
英文摘要 |
Variable selection is an important tool in QSAR. In this article, we employ three known techniques: sliced inverse regression (SIR), principal components regression (PCR) and partial least squares regression (PLSR) for models to predict the boiling points of 530 saturated hydrocarbons. With 122 topological indices as input variables our results show that these three methods have good performance and perform better than some existing methods in the literature. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 |