题名

Boiling Points Predictions Study via Dimension Reduction Methods: SIR, PCR and PLSR

DOI

10.6339/JDS.2003.01(4).177

作者

Hong Yin;Yi-Zeng Liang;Qin-Nan Hu

关键词

Cross-validation ; dimension reduction ; partial least squares regression ; principal component regression ; sliced inverse regression

期刊名称

Journal of Data Science

卷期/出版年月

1卷4期(2003 / 10 / 01)

页次

461 - 480

内容语文

英文

英文摘要

Variable selection is an important tool in QSAR. In this article, we employ three known techniques: sliced inverse regression (SIR), principal components regression (PCR) and partial least squares regression (PLSR) for models to predict the boiling points of 530 saturated hydrocarbons. With 122 topological indices as input variables our results show that these three methods have good performance and perform better than some existing methods in the literature.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計