题名 |
Linear Information Models: An Introduction |
DOI |
10.6339/JDS.2007.05(3).442 |
作者 |
Philip E. Cheng;Jiun W. Liou;Michelle Liou;John A. D. Aston |
关键词 |
Contingency tables ; log-linear models ; information models ; model selection ; mutual information |
期刊名称 |
Journal of Data Science |
卷期/出版年月 |
5卷3期(2007 / 07 / 01) |
页次 |
297 - 313 |
内容语文 |
英文 |
英文摘要 |
Relative entropy identities yield basic decompositions of categorical data log-likelihoods. These naturally lead to the development of information models in contrast to the hierarchical log-linear models. A recent study by the authors clarified the principal difference in the data likelihood analysis between the two model types. The proposed scheme of log-likelihood decomposition introduces a prototype of linear information models, with which a basic scheme of model selection can be formulated accordingly. Empirical studies with high-way contingency tables are exemplified to illustrate the natural selections of information models in contrast to hierarchical log-linear models. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 |