题名

Linear Information Models: An Introduction

DOI

10.6339/JDS.2007.05(3).442

作者

Philip E. Cheng;Jiun W. Liou;Michelle Liou;John A. D. Aston

关键词

Contingency tables ; log-linear models ; information models ; model selection ; mutual information

期刊名称

Journal of Data Science

卷期/出版年月

5卷3期(2007 / 07 / 01)

页次

297 - 313

内容语文

英文

英文摘要

Relative entropy identities yield basic decompositions of categorical data log-likelihoods. These naturally lead to the development of information models in contrast to the hierarchical log-linear models. A recent study by the authors clarified the principal difference in the data likelihood analysis between the two model types. The proposed scheme of log-likelihood decomposition introduces a prototype of linear information models, with which a basic scheme of model selection can be formulated accordingly. Empirical studies with high-way contingency tables are exemplified to illustrate the natural selections of information models in contrast to hierarchical log-linear models.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計