题名

A Nonparametric Approach Using Dirichlet Process for Hierarchical Generalized Linear Mixed Models

DOI

10.6339/JDS.2010.08(1).562

作者

Jing Wang

关键词

Dirichlet process ; generalized linear mixed model ; Gibbs sampler ; Metropolis-Hastings algorithm

期刊名称

Journal of Data Science

卷期/出版年月

8卷1期(2010 / 01 / 01)

页次

43 - 59

内容语文

英文

英文摘要

In this paper, we propose a nonparametric approach using the Dirichlet processes (DP) as a class of prior distributions for the distribution G of the random effects in the hierarchical generalized linear mixed model (GLMM). The support of the prior distribution (and the posterior distribution) is large, allowing for a wide range of shapes for G. This provides great flexibility in estimating G and therefore produces a more flexible estimator than does the parametric analysis. We present some computation strategies for posterior computations involved in DP modeling. The proposed method is illustrated with real examples as well as simulations.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計