题名 |
Selection of Smoothing Parameter for One-Step Sparse Estimates with Lq Penalty |
DOI |
10.6339/JDS.2011.09(4).945 |
作者 |
Masaru Kanba;Kanta Naito |
关键词 |
One-step estimator ; oracle properties ; penalized likelihood ; smoothing parameter ; variable selection |
期刊名称 |
Journal of Data Science |
卷期/出版年月 |
9卷4期(2011 / 10 / 01) |
页次 |
549 - 564 |
内容语文 |
英文 |
英文摘要 |
This paper discusses the selection of the smoothing parameter necessary to implement a penalized regression using a nonconcave penalty function. The proposed method can be derived from a Bayesian viewpoint, and the resultant smoothing parameter is guaranteed to satisfy the sufficient conditions for the oracle properties of a one-step estimator. The results of simulation and application to some real data sets reveal that our proposal works efficiently, especially for discrete outputs. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 |