题名

Selection of Smoothing Parameter for One-Step Sparse Estimates with Lq Penalty

DOI

10.6339/JDS.2011.09(4).945

作者

Masaru Kanba;Kanta Naito

关键词

One-step estimator ; oracle properties ; penalized likelihood ; smoothing parameter ; variable selection

期刊名称

Journal of Data Science

卷期/出版年月

9卷4期(2011 / 10 / 01)

页次

549 - 564

内容语文

英文

英文摘要

This paper discusses the selection of the smoothing parameter necessary to implement a penalized regression using a nonconcave penalty function. The proposed method can be derived from a Bayesian viewpoint, and the resultant smoothing parameter is guaranteed to satisfy the sufficient conditions for the oracle properties of a one-step estimator. The results of simulation and application to some real data sets reveal that our proposal works efficiently, especially for discrete outputs.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計