题名

社會大眾參與石磨烯主題科普活動之認知與感受分析研究

并列篇名

A Study on the Analysis of Public Cognition and Perception towards the Participation in Graphene-themed Popular Scientific Activities

作者

潘文福(Wen-Fu Pan)

关键词

石墨烯 ; 性別 ; 科普教育 ; 感受 ; 認知 ; Graphene ; gender ; popular scientific education ; perception ; cognition

期刊名称

科技博物

卷期/出版年月

20卷1期(2016 / 03 / 01)

页次

139 - 170

内容语文

繁體中文

中文摘要

石墨烯的應用研究與我們的生活息息相關,而科普教育是讓社會大眾瞭解石墨烯概念、應用研究、新興產業與建立正向感受的策略之一。因此,本研究的目的在於:1.瞭解社會大眾參與石墨烯主題科普活動後之認知與感受;2.分析社會大眾之認知與其感受的關聯性;3.比較不同性別與身分社會大眾之認知與感受的差異性;4.分析性別與身分二因子對社會大眾參與認知與感受的交互作用。本研究配合科技部之科技到府活動,於2015 年4-5月期間在台南市創意文化園區實施推廣教育,並透過自編問卷來蒐集社會大眾參與活動的資料,活動期間願意填寫問卷的社會大眾共有673位,回收整理後的有效問卷共246份;分析時以社會大眾的性別與身分作為自變項,再以社會大眾參與後的認知與感受作為依變項,然後以描述統計、積差相關、t檢定、變異數分析等方法來分析。本研究歸納出以下幾項結論:1.社會大眾參與石墨烯主題科普活動後,認知表現已達60 分以上,而參與後感受也給予正向肯定的感受;2.社會大眾參與後之認知與其感受具有顯著關聯性,認知表現對其參與感受具有3.7%的預測力;3.男性參與民眾有較高的滿意度與正向感受,而大專以上學生身分的參與者,對於石墨烯主題科普活動的參與感受、滿意度與行為意向最為積極正向與肯定;4.社會大眾的認知與感受,並沒有受到性別與身分二因子的交互作用所影響。最後研究者也提出建議供參考。

英文摘要

The applied research on graphene is closely related to human life, and the use of popular scientific education was a strategy to promote the public understanding of the concept of graphene, its applied research, and its emerging industry as well as to establish positive perception towards it. Therefore, this study was aimed towards the following: 1) to understand the cognition and perception of the public towards participation in graphene-themed popular scientific activities; 2) to analyze the correlation between the cognition and perception of the public; 3) to compare the difference in the cognition and perception of the public with different genders and identity; and 4) to analyze the interaction between the factors of gender and identity towards public cognition and perception. The study was done in coordination with the Ministry of Science and Technology for the Technology-to-Tainan Festival. Promotional education was implemented from April to May 2015, in the Tainan Cultural & Creative Park, where the researcher-designed questionnaire was used to collect data from the public participating in activities. A total of 673 people were willing to fill in the questionnaire, among which 246 copies were valid. Gender and identity were regarded as independent variables and the public cognition and perception as dependent variables for the analysis of descriptive statistics, product-moment correlation, t-test, and F-test. The following conclusions were drawn: 1) After public participation in graphene-themed popular scientific activities, the performance on cognition reached above 60, with positive perception. 2) After public participation, the cognition presented significant correlation with the perception, and the performance on cognition revealed 3.7% predictive power on the participation perception. 3) Male participants displayed higher satisfaction and positive attitudes. Student participants with college status or above also showed higher positive perception, satisfaction, and behavioral intention towards graphene-themed popular scientific activities. 4) Public cognition and perception were not affected by two-factor interactions of gender and identity. Finally, there are some proposed recommendations for reference.

主题分类 人文學 > 藝術
社會科學 > 教育學
社會科學 > 管理學
参考文献
  1. 黃幸美(1995)。數理與科學教育的性別差異之探討。婦女與兩性學刊,6,95-135。
    連結:
  2. Wansom, S., Mason, T.O., Drane, D.L., & Light, G. (2007). Recommended features for a NSE degree program: Common features identified from three studies. Retrieved Nov 4, 2010, from http://www.nclt.us/grg/30830.pdf
  3. 蔡雅芝(2012)。台灣奈米研究。取自[奈米科學網],https://nano.nchc.org.tw/
  4. (2009).Science and Technology Yearbook.
  5. 彭子豪(2014 年10月01 日)。臺灣奈米科技展登場--產業推手點將錄。經濟日報,取自[聯合財經網],http://money.udn.com/storypage.php?sub_id=5640&art_id=397479
  6. Allum, N.,Sturgis, P.,Tabourazi, D.,Brunton-Smith, I.(2008).Science knowledge and attitudes across cultures: A meta-analysis.Public Understanding of Science,17(1),35-54.
  7. Berkeley, S.,Marshak, L.,Mastropieri, M. A.,Scruggs, T. E.(2011).Improving student comprehension of social studies text: A self-questioning strategy for inclusive middle school classes.Remedial and Special Education,32(2),105-113.
  8. Bottge, B. A.,Rueda, E.,Grant, T. S.,Stephens, A. C.,LaRoque, P. T.(2010).Anchoring problem-solving and computation instruction in context-rich learning environments.Exceptional Children,76(4),417-437.
  9. Cecil, N. L.,Pfeifer, J.(2011).The art of inquiry: Questioning strategies for K-6 classrooms.Manitoba, Canada:Portage & Main Press.
  10. Dale, E.(1969).Audiovisual methods in teaching.New York, NY:Dryden Press.
  11. Ernst, J. V.(2009).Nanotechnology education: Contemporary content and approaches.The Journal of Technology Studies,35(1),3-8.
  12. Foley, E. T.,Hersam, M. C.(2006).Assessing the need for nanotechnology education reform in the United States.Nanotechnology Law & Business,3(4),467-484.
  13. Fuchs, L. S.,Fuchs, D.(2002).Mathematical problem-solving profiles of students with mathematics disabilities with and without co morbid reading difficulties.Journal of Learning Disabilities,35,563-573.
  14. Greenberg, A.(2009).Integrating nanoscience into the classroom: Perspectives on nanoscience education projects.ACS Nano,3(4),762-769.
  15. Halpern, D. F.(2000).Sex differences in cognitive abilities.New York, NY:Psychology press.
  16. Healy, N.(2009).Why nano education?.Journal of Nano Education,1(1),6-7.
  17. Holley, S. E.(2009).Nano revolution - Big impact: How emerging nanotechnologies will change the future of education and industry in America (and more specifically in Oklahoma) an abbreviated account.Journal of Technology Studies,35(1),9-19.
  18. Kelly, A. E.(Ed.),Lesh, R. A.(Ed.)(2000).Handbook of research design in mathematics and science education.Mahwah, NJ:Erlbaum.
  19. Laffey, J. M.,Schmidt, C. M.,Galyen, K.(2013).Virtual gaming and learning environments as experience-tools for learning through problem solving.Learning, Problem Solving, and Mind Tools,UK:
  20. Lave, J.,Smith, S.,Butler, M.(1988).Problem solving as an everyday practice.the teaching and assessing of mathematical problem solving,Reston, VA:
  21. Mayer, R. E.(2004).Should there be a three-strike rule against pure discovery learning?.American Psychologist,59(1),14.
  22. Meyyappan, M.(2004).Nanotechnology education and training.Journal of Materials Education,26(3-4),311-320.
  23. Miller, D. I.,Halpern, D. F.(2014).The new science of cognitive sex differences.Trends in Cognitive Sciences,18(1),37-45.
  24. Novoselov, K.,Geim, A. K.,Morozov, S.,Jiang, D.,Zhang, Y.,Dubonos, S.,Grigorieva, I.,Firsov, A.(2004).Electric field effect in atomically thin carbon films.Science,306,666-669.
  25. Orgill, M.,Crippen, K. J.(2009).What's so big about being small?.The science Teacher,76(2),41-48..
  26. Pan, W. F.,Tu, S. C.,Chien, M. Y.(2012).Feasibility analysis of improving on-campus learning paths via a depth sensor.Interactive Learning Environments,22(4),1-24.
  27. 吳宗明(2011)。國小階段應具有奈米科技核心概念。奈米國家型科技人才培育計畫之自由整合型計畫期中諮詢會議,臺北市:
  28. 施琮仁(2013)。科學傳播與在地特色:以奈米科技為例。人文與社會科學簡訊,14(4),51-59。
  29. 張巧芸、盧廷昌(2013)。石墨烯在發光二極體上的應用。電子月刊,19(11),90-99。
  30. 黃台珠(2011)。K-12奈米科技融入式教材概念圖。奈米國家型科技人才培育計畫之自由整合型計畫期中諮詢會議,臺北市:
  31. 黃愷俊(2012)。碩士論文(碩士論文)。臺中市,朝陽科技大學環境工程與管理系。
  32. 楊靜、辛懷梓、張自立(2011)。PODE教學策略對國小四年級學生學習奈米科技之成效。2011年中華民國物理教育學會年會成果集,臺北市:
  33. 楊龍立(1990)。博士論文(博士論文)。臺北市,國立臺灣師範大學教育研究所。
  34. 葉孟考(2011)。國小階段奈米科技概念。奈米國家型科技人才培育計畫之自由整合型計畫期中諮詢會議,臺北市:
  35. 潘文福(2013)。不同互動介面對小學生奈米學習動機差異之比較研究。GCCIL 2013 全球華人探究學習創新應用論文集,臺南市:
被引用次数
  1. 謝金威、潘文福(2018)。體感創客在跨領域教學中的創作表現與其創作過程所扮演的合作角色評估。科學教育學刊,26(S),377-398。
  2. 閻映丞,陳玫岑(2019)。觀眾對奈米科技認知與情意探討:以奈米特展為場域。科技與人力教育季刊,5(3),1-32。