题名

應用Data Mining建置一分類模型

并列篇名

Applying Data Mining to Build a Classify Model

DOI

10.29767/ECS.200703.0006

作者

戴建耘(Chien-Yun Dai);盧治均(Chih-Chun Lu);廖秋惠(Chiu-Huin Liao)

关键词

资料挖掘 ; 资料倉儲 ; 决策樹 ; Data Mining ; Data Warehouse ; Decision-Tree

期刊名称

Electronic Commerce Studies

卷期/出版年月

5卷1期(2007 / 03 / 31)

页次

109 - 123

内容语文

繁體中文

中文摘要

本研究以资料挖掘(Data Mining)、资料倉儲(Data Warehouse)以及分類(Classification)演算法规则中之决策樹(Decision-Tree)爲基礎之分類法做爲本研究之工具,以心臓科麻醉部爲例,從醫療單位對抗生素進行導管菌落判断感染监控的歷史案例中,建構出可用以预测心静脈導管塗抹抗生素在病患身上的作用結果之分類模式,用以協助醫藥人員有效判断感染情形與特徵,而提升抗生素之用藥醫療品質、降低可能的醫療资源浪费。 實驗結果顯示,本研究所收集的導管菌落判断感染監控资料中有顯著類别間资料數量不對稱的现象,而造成模式预测偏向的問題。經由成本敏感法的連用预测錯誤成本的改善绸整,提升分類预测的效能,建構出對各類别资料都有良好预测效能的理想模式。目的做爲日後舆專家系統之結合,發展出一套强而有力之醫療專家系統,减少醫療费用的浪费,同時在照顧病人品質方面能夠维持一定的水凖。

英文摘要

The research use Data Mining, Data Warehouse and Decision-Tree that Classification perform the algorithm makes for the tool. Take department that anaesthetizes division of cardiology as an example. Build and construct out measurable Central Venous Catheter to apply in the historical case of judging Central Venous Catheter Insertion from the antibiotic and infecting Wipe the categorized model on patient of antibiotic. The paper use under-sampling, over-sampling and Part to solve skewed class distribution problem. And then use C4.5 algorithms to build up classifier. Verify via the expert that use this classifier can effectively help the medical expert to extract out it about Central Venous Catheter Insertion good knowledge rule.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
参考文献
  1. Berry, M. J. A.,Linoff, G. S.(1997).Data Mining Techniques.John Wiley & Sons, Inc..
  2. Berson, A.,Smith, S. J.,Thearling, K.(1999).Building Data Mining Applications for CRM.McGraw-Hill.
  3. Chawla, N.,Bowyer, K.,Hall, L.,Kegelmeyer, P.(2002).SMOTE: Synthetic Minority Over-sampling Technique.Journal of Artificial Intelligence Research,16,321-357.
  4. DeRouin, E.,Brown, J.,Beck, H.,Fausett, L.,Schneider, M.(1991).Intelligent Engineering Systems Through Artificial Neural Networks.New York:ASME Press.
  5. Fayyad, U. M.(1996).Data Mining and Knowledge Discovery: Making Sense out of Data.IEEE Expert,11(5),20-25.
  6. Frawley, W. J.,Piatetsky-Shapiro, G.,Matheus, C. J.(1991).Knowledge Discovery Databases: An overview, in Knowledge Discovery in Database.Cambridge, MA:AAAI/MIT.
  7. Gnardellis, T.,Boutsinas, B.(2001).On Experimenting with Data Mining in Education.
  8. Hart, P. E.(1968).The Condensed Nearest Neighbor Rule.IEEE Transactions on Information Theory,IT-14,515-516.
  9. Hoven, J. V. D.(1998).Data Warehousing: Bringing It All Together.Information System Management.
  10. Inmon, W. H.(1996).Building the Data Warehouse.N.Y.:John Wiley & Sons.
  11. Kimball, R.(1993).The Data Warehouse Tool kit.N.Y.:Wiley & Sons.
  12. Lewis, D.,Catlett, J.(1994).Heterogeneous Uncertainty Sampling for Supervised Learning.Proceedings of the 11th International Conference on Machine Learning
  13. Lewis, P. M.,Bernstein, A.,Kifer M.(2001).Database and Transaction Processing-An Application-Oriented Approach.Addison Wesley.
  14. Liu, Z.,Guo, M.(2001).A Proposal of Integrating Data Mining and On-Line Analytical Processing in Data Warehouse Proceedings.ICII 2001-Beijing. 2001 International Conferences
  15. Murtaza, A.(1998).A framework for Developing Enterprise Data Warehouse.Information System Management,Fall,21-26.
  16. Quinlan J. R.(1993).C4.5: Programs for Machine Learning.Morgan Kaufmann.
  17. Skalak, D.(1994).Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms.Proceedings of 11th Machine Learning Conference
  18. Witten, I. H.,Frank, E.(2000).Data Mining: Practical machine learning tools with Java implementations.San Francisco:Morgan Kaufmann.
  19. 林東清(2003)。資訊管理e化企業的核心競爭能力。台北:智勝文化。
  20. 梁定澎(2004)。決策支援系統與企業智慧。台北:智勝文化。
  21. 黃素珍(2004)。南台科技大學企業管理研究所。
被引用次数
  1. 蔡佳玲、袁繼銓、洪新原(2011)。以決策樹模型探討未開立慢性病連續處方之影響因子。資訊管理學報,18(4),139-164。