题名

An Information Retrieval Method Based on Semantic Similarity Degree for Online Shopping

并列篇名

以語意相似度為基礎之線上購物資訊查詢方法

DOI

10.29767/ECS.201112.0005

作者

黃明祥(Ming-Shang Huang)

关键词

語意資訊查詢 ; 電子商務 ; 線上購物 ; 語意相似度 ; semantic information retrieval (SIR) ; electronic commerce (EC) ; online shopping ; semantic similarity degree (SSD)

期刊名称

Electronic Commerce Studies

卷期/出版年月

9卷4期(2011 / 12 / 31)

页次

483 - 502

内容语文

英文

中文摘要

在網際網路進行資訊查詢是電子商務活動一項重要的議題。至目前為止,大部分的資訊方法均未能有效處理語意資訊查詢之問題。有鑑於此,本研究提出一個以物件語意相似度為基礎之語意查詢法來解決上述問題,本研究係以兩個香水產品之間的精油、溶劑、酒精與水成份之相似度來計算香水產品之間的物件語意相似度,並以共識演算法發展一個出計算權重的方法。本研究為了證明提出此一方法在實務方面應用之可用性與實用性,發展出一個語意相似度的資訊查詢系統,並且採用關鍵字查詢法與語意查詢法進行香水產品之購物網站之資料集進行實驗,根據實驗結果顯示,本研究提出的語意查詢方法在類似產品查詢方面比關鍵字查詢法擁有較為優異表現。

英文摘要

Information retrieval (IR) on the internet is a key issue in electronic commerce (EC). However, most of IR methods can not deal with the semantic issues on IR. The purpose of this paper is to propose a semantic information retrieval method based on semantic similarity degree (SSD) to resolve the issues mentioned above. The computational method of SSD is derived from the concept of object class similarity concerning with the similarity of essential oils, solvent, alcohol and water between two perfume products. An algorithm based on the consensus algorithms is developed to compute the weight for the semantic similarity. To demonstrate the applicability and practicability of the proposed method, a semantic IR system is developed in this paper. An experiment using the proposed method and the keyword-based information retrieval method on the data set of a perfume online shopping website is conducted. Experimental results show that the proposed semantic IR demonstrates substantial enhancement of information retrieval quality in choosing similar product for online shopping.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
参考文献
  1. Madansky, A. (1964). Externally Bayesian Groups, Unpublished Memorandum, RM-4141-PR, The RAND Corporation..
  2. Jakoveti´c, D., Xavier, J., and Moura, J.M.F. (2009). Weight Optimization for Consensus Algorithms with Correlated Switching Topology, http://arxiv.org/PS_cache/arxiv/pdf/0906/0906.3736v2.pdf
  3. Bacharach, M. (1972). Scientific Disagreement, Unpublished discussion paper, Christ Church, Oxford.
  4. Adomavicius, G.,Tuzhilin, A.(2005).Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
  5. Analyti, A.,Spyratos, N.,Constantopoulos, P.(1998).Deriving Semantic Information through Property Covering and Inheritance.Data & Knowledge Engineering,3-30.
  6. Arms, W.Y. ,Virginia, R.(1995).Key Concepts in the Architecture of the Digital Library.D-Lib Magazine,July
  7. Bakos, J.Y.(1997).Reducing buyer search costs: implications for electronic: marketplaces.Management Science,43(12),1676-1692.
  8. Burke, R.(2002).Hybrid recommender systems: survey and experiments.User Modeling and User-Adapted Interaction,12,331-370.
  9. Burke, R.(2000).Knowledge based recommender systems.Encyclopedia of Library & Information Systems,69(32),180-200.
  10. Cabo, M.J.A.,Llavori, B.(1997).An Approach to a Digital Library of Newspapers.Information Processing & Management,33(5),545-661.
  11. Castano, S.,Antonellis, V.D.,Gugini, M. G.,Pernici, B.(1998).Conceptual Schema Analysis: Techniques and Application.ACM Transactions on Database Systems,23(3),268-333.
  12. Castano, S.,Martella, G.,Samarati, P.(1997).Analysis, Comparison and Design of Role-Based Security Specifications.Data and Knowledge Engineering,21,31-55.
  13. Chen, H.(1999).Semantic Research for Digital Libraries.D-Lib Magazine,5(10)
  14. Chen, Y.C.,Shang, R.A.,Kao, C.Y.(2009).The effects of information overload on consumers' subjective state towards buying decision in the internet shopping.Electronic Commerce Research and Application,8,48-58.
  15. DeGroot, M.H.(1974).Reaching a Consensus.Journal of the American Statistical Association,69(345),118-121.
  16. Ding, C.,Li, T.,Jordan, I.(2006).LBNLTech Report, 60428LBNLTech Report, 60428,未出版
  17. Eisenberg, E.,Gale, D.(1959).Consensus of Subjective Probabilities: The Pari-Mutuel Method.Annals, of Mathematical Statistics,30,165-168.
  18. Foltz, P.W.,Dumais, S.T.(1992).Personalized Information Delivery: An Analysis of Information Filtering Method.Communications of the ACM,35(12),51-60.
  19. Formica, A.(2006).Ontology-based concept similarity in Formal Concept Analysis.Information Sciences,176,2624-2641.
  20. Frakes, W.B.,Baeza-Yates, R.(1992).Information Retrieval Data Structures and Algorithms.Englewood Cliffs, NJ:Prentice-Hall.
  21. Godoy, L. A. F. D.,Hantao, L. W.,Pedroso, M. P.(2011).Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography.Analytica Chimica Acta,699,120-125.
  22. Goldberg, D.,Nichols, D.,Oki, B.M.,Terry, D.(1992).Using collaborative filtering to weave an information tapestry.Communications of the ACM,35(12),61-70.
  23. Green, S.J.(1999).Building Hypertext Links by Computing Semantic Similarity.IEEE Transactions on Knowledge and Data Engineering,11(5),713-730.
  24. Han, L.,Suna, L.,Chen, G.,Xie, L.(2006).ADSS: An approach to determining semantic similarity.Advances in Engineering,37,129-132.
  25. Haubl, G.,Trifts, V.(2000).Consumer decision making in online shopping environments: the effects of interactive decision aids.Marketing Science,19(1),4-21.
  26. Holstein, S.V.(1970).Assessment and Evolution of Subjective Probability Distributions.Stockholm:The Economic Research Institute at the Stockholm School.
  27. Huang, M.S.(1999).Sun Yat-Sun University.
  28. Kagie, M.,Wezel, M.V,Groenen, P.J.F.(2008).A graphical shopping interface based on product attributes.Decision Support Systems,46,265-276.
  29. Kamis, A.(2006).Search strategies in shopping engines: an experimental investigation.International Journal of Electronic Commerce,11(1),63-84.
  30. Lanckriet, G.R.G.,Cristianini, N.,Bartlett, P.L.,Ghaoui, L.EI.,Jordan, M.I.(2006).Learning the kernel matrix with semi-definitive programming.ICML
  31. Lee, D.D.,Seung, H.S.(1999).Learning the parts of objects with nonnegative matrix factorization.Nature,401,788-791.
  32. Li, T.,Ding, C.(2009).Weighted consensus clustering.SIAM
  33. Li, Y.,Bandar, Z.A.,Mclean, D.(2003).An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources.IEEE Transactions on Knowledge and Data Engineering,15(4),871-882.
  34. Lin, W.S,Cassaigne, N.,Huan, T.C.(2010).A Framework of online support for information recommendations.Expert Systems with Applications,37,6874-6884.
  35. Meditosko, G.,Bassiliades, N.(2007).Object-Oriented Similarity Measures for Semantic Web Service Matchmaking.IEEE Fifth European Conference on Web Services
  36. Morris, P.A.(1971).Department of Engineering Economy Systems, Stanford University.
  37. Norvig, T.(1967).Consensus of Subjective Probabilities: A Convergence Theorem.Annals of Mathematical Statistics,38,221-225.
  38. Papadimitriou, C.H.,Raghavan, P.,Tamaki, H.,Vempala, S.(2000).Latent Semantic Indexing: A Probabilistic Analysis.Journal of Computer and System Sciences,61(2),217-235.
  39. Peterson, R.A.,Merino, M.C.(2003).Consumer information search behavior and the internet.Journal of the Academy of Marketing Science,20(2),99-121.
  40. Prasad, B.(2003).Intelligent techniques for e-commerce.Journal of Electronic Commerce Research,4(2),65-71.
  41. Rodriguez, M.A.,Egenhofer, M.J.(2003).Determining Semantic Similarity among Entity Classes from Different Ontologies.IEEE Transactions on Knowledge and Data Engineering,15(2),442-456.
  42. Savage, L.J.(1964).Elicitation f Personal Probabilities Expectations.Journal of the American Association,66,783-801.
  43. Schatz, B.R.(1997).Information Retrieval in Digital Libraries: Bring Search to the Net.Science,275,327-334.
  44. Stone, M.(1961).The Opinion Pool.Annals of Mathematical Statistics,32,1339-1342.
  45. Tanaka, M.,Ichikawa, T.(1988).Visual User Interface for Map Information Retrieval based on Semantic Significance.IEEE Transactions on Software Engineering,14(5),666-670.
  46. Turtle, H.R.,Croft, W.B.(1992).A Comparison of Text Retrieval Models.Computer Journal,35(3),279-290.
  47. West, P.M.,Ariely, D.,Bellman, S.,Bradlow, E.,Huber, J.,Johnson, E.,Kuhn, B.,Little, J.,Schkade, D.(1999).Agents to the rescue?.Marketing Letters,10(3),285-301.
  48. Winkler, R.L.(1968).The Consensus of Subjective Probability Distributions.Management Science,15,B61-B75.
  49. Wonga, T.L.,Lam, W.(2009).An unsupervised method for joint information extraction and feature mining across different Web sites.Data & Knowledge,68,107-125.
  50. Yang, B.Z.(1986).The manufacturing and applications of the perfume.Taipei:Xushi Foundation.