题名

整合社群網絡之多準則餐廳推薦系統

并列篇名

Integrating Multi-criteria Restaurant Recommendation Systems on Social Networks

作者

邱韻蓉(Yun-Rong Ciou);溫演福(Yean-Fu Wen);陳柏瑋(Po-Wei Chen)

关键词

資訊過濾 ; 擷取技術 ; 網路使用 ; 社群網站 ; 推薦系統 ; information filtering and retrieval technology ; internet use ; social network ; recommendation system

期刊名称

Electronic Commerce Studies

卷期/出版年月

13卷1期(2015 / 03 / 31)

页次

1 - 32

内容语文

繁體中文

中文摘要

近年來,隨著資訊交流的發達,人們可獲得越來越多的美食資訊,使得消費者越來越重視食物的品質、價位、以及餐廳服務態度和口碑;由於社群網絡的興起,消費者已習慣透過網路資訊和好友推薦以選擇更適合自己消費習慣的餐廳,社群所能擁有的資訊已多過於一些傳統的美食網站,但社群系統的訊息更替快速,使用者在搜尋舊有資料上有些難度。本研究的目的是希望建立一個以使用者為主(個人化)的餐廳推薦系統,結合使用者本身的餐廳偏好以及使用者周遭好友的經驗分享(由社群得知),幫助使用者過濾掉不感興趣或沒有習慣去的餐廳,以達到隨時隨地的有效推薦,透過三層的過濾模型所得的推薦結果顯示在視覺化地圖上,以簡化使用者餐廳選擇決策。經過一系列的驗證過程,我們比較了有社群經驗及沒有社群經驗的推薦結果,以及經驗多寡的影響;評估結果發現有社群經驗的推薦結果成功率及準確度較高,而經驗的多寡會使推薦的成功率及準確度上升。

英文摘要

In recent years, people obtain more food information with developed information exchange system. Consumers pay more attention on the food quality, price, restaurant service attitude and reputation. Consumers have been habit to observe related information through Internet and recommendation to choose the satisfying restaurant for their own consumption habits. Through the rising of social networks, the amount of the related information possessed by a social network is much higher than the traditional delicacies web sites, but the information of the social network update much faster than traditional ones that is difficult to search the required message. The purpose of this study is to build-up a user-based (or personal) restaurant recommendation system, which combined the user restaurant preferences and share experiences around their friends (i.e., to learn from the social networks). The system helps filter out noninterest or non-habitual restaurant to achieve an effective recommendation anywhere. The recommendation results, which are fielded through the proposed three fielder levels model, are shown on the virtualization map to simply restaurant selective decision. After a series of validation process, we have compared the recommendation result by using experience of community and no experience of community, and the impact of the amount of experiences; we found that community experience has a higher success rate and accuracy, and the level of experience increases the success rate and accuracy.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
参考文献
  1. 陳欽雨、張書豪、張卿儀(2013)。網路口碑、社群認同與知覺利益對網購意願之影響:以台灣區Facebook 粉絲專頁為例。電子商務研究,11(4),403-430。
    連結:
  2. 黃莉君、江淑怡(2013)。線上社群之使用者認同感、幸福感及組織公民行為探討。電子商務研究,11(3),289-310。
    連結:
  3. 資策會 FIND 網站(2010)。網路口碑影響大網友購物前會先參考虛擬社群意見。存取日期:2012 年9 月21 日,取自:http://www.find.org.tw/find/home.aspx?page=board&id=1133。
  4. 劉欣飴(2011)。行動打卡不再只是打卡而已。存取日期:2012 年11 月07 日,取自:http://www.find.org.tw/find/home.aspx?page=news&id=6229。
  5. 愛評網,參考網址為:http://www.ipeen.com.tw/。
  6. 資策會 FIND 網站(2014)。2013 年第3 季我國行動上網觀測。存取日期:2014 年9月15 日,取自:http://www.find.org.tw/find/home.aspx?page=many&id=382。
  7. Google Developers (2013). Google Maps JavaScript API v3. Retrieved February 1,2013 , from:https://developers.google.com/maps/documentation/javascript/
  8. Facebook Developers (2013). Graph API. Retrieved February 1, 2013 , from https://developers.facebook.com/docs/reference/api/
  9. 黃競樺(2008)。社交購物網站成為電子商務的一股新力量。存取日期:2013 年12月28 日,取自:http://www.find.org.tw/find/home.aspx?page=news&id=5146。
  10. Statista.com. Number of social network users worldwide from 2010 to 2018 (in billions).Retrieved September 15, 2014, From http://www.statista.com/statistics/278414/number-of-worldwide-social-networkusers/
  11. Statisticbrain.com, Facebook Statistics. Retrieved September 15, 2014, From http://www.statisticbrain.com/facebook-statistics/
  12. Adomavicius, G.,Kwon, Y.(2007).New recommendation techniques for multicriteria rating systems.IEEE Intelligent Systems,22(3),48-55.
  13. Chung, J.E.(2013).Social interaction in online support groups: Preference for online social interaction over offline social interaction.Computers in Human Behavior,29(4),1408-1414.
  14. Galef, B.G.(2012).A case study in behavioral analysis, synthesis and attention to detail: Social Learning of food preferences.Behavioural Brain Research,231(2),266-271.
  15. Goldberg, D.,Nichols, D.,Oki, B.M.,Terry, D.(1992).Using collaborative filtering to weave an information TAPESTRY.Communications of the ACM,35(12),61-70.
  16. Hogg, T.(2010).Inferring preference correlations from social networks.Electronic Commerce Research and Applications,9(1),29-37.
  17. Huang, C.-L.,Yeh, P.-H.,Lin, C.-W.,Wu, D.-C.(2014).Utilizing user tag-based interests in recommender systems for social resource sharing websites.Knowledge-Based Systems,56,86-96.
  18. Huang, Z.,Benyoucef, M.(2014).User preferences of social features on social commerce websites: An empirical study.Technological Forecasting and Social Change
  19. Jiang, G.,Ma, F.,Shang, J.,Chau, Patrick Y.K.(2014).Evolution of knowledge sharing behavior in social commerce: An agent-based computational approach.Information Sciences,278,250-266.
  20. Kim, Y. A.,Park, G.W.(2013).Topic-driven social rank: Personalized search result ranking by identifying similar, credible users in a social network.Knowledge-Based Systems,54,230-242.
  21. Lee, H.,Park, H.,Kim, J.(2013).Why do people share their context information on social network services? A qualitative study and an experimental study on users' behavior of balancing perceived benefit and risk.International Journal of Human-Computer Studies,71(9),862-877.
  22. Lee, S.Y.(2014).How do people compare themselves with others on social network sites? The case of Facebook.Computers in Human Behavior,32,253-260.
  23. Li, X.,Wang, M.,Liang, T.-P.(2014).A multi-theoretical Kernel-based approach to social network-based recommendation.Decision Support Systems
  24. Li, Y.-M.,Chou, C.-L.,Lin, L.-F.(2014).A social recommender mechanism for location-based group commerce.Information Sciences,274,125-142.
  25. Li, Y.-M.,Hsiao, H.-W.,Lee, Y.-L.(2013).Recommending social network applications via social filtering mechanisms.Information Sciences,239,18-30.
  26. Li, Y.-M.,Wu, C.-T.,Lai, C.-Y.(2013).A social recommender mechanism for E-Commerce: Combining similarity, trust, and relationship.Decision Support Systems,55(3),740-752.
  27. Lin, M.J.J.,Hung, S.W.,Chen, C.J.(2009).Fostering the determinants of knowledge sharing in professional virtual communities.Computers in Human Behavior,25(4),929-939.
  28. Liu, F.,Lee, H. J.(2010).Use of social network information to enhance collaborative filtering performance.Expert Systems with Applications,37(7),4772-4778.
  29. Lousame, F. P.,Sánchez, E.(2009).View-based recommender systems.Proceedings of the third ACM conference on Recommender systems
  30. Lousame, F.P.,Sanchez, E.(2010).Multicriteria predictors using aggregation functions based on item views.Proceedings of IEEE International Conference on Intelligent Systems Design and Applications (ISDA),Cario, Egypt:
  31. Lu, Y.,Zhao, L.,Wang, B.(2010).From virtual community members to C2C ecommerce buyers: Trust in virtual communities and its effect on consumers' purchase intention.Electronic Commerce Research and Applications,9(4),346-360.
  32. McMillan, D.W.,Chavis, D.M.(1986).Sense of community: A definition and theory.Journal of Community Psychology,14(1),6-23.
  33. Quijano-Sánchez, L.,Díaz-Agudo, B.,Recio-García, J.A.(2014).Development of a group recommender application in a social network.Knowledge-Based Systems
  34. Tan, T.H.,Chang, C. S.,Chen, Y. F.(2012).Developing an intelligent e-Restaurant with a menu recommender for customer-centric service.IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,42(5),775-787.
  35. Zhang, J.,Peng, Q.,Sun, S.,Liu, C.(2014).Collaborative filtering recommendation algorithm based on user preference derived from item domain features.PhysicaA: Statistical Mechanics and its Applications,396,66-76.
  36. 郭羿呈(2012)。碩士論文(碩士論文)。台北市,國立台灣大學工程科學及海洋工程學研究所。
  37. 廖婉菁(2002)。碩士論文(碩士論文)。桃園縣,中原大學資訊管理學系。
被引用次数
  1. 陳俐靜(2016)。雲端運算於健康管理推薦機制之研究。淡江大學管理科學學系企業經營碩士在職專班學位論文。2016。1-124。