题名

休閒產業行銷推薦機制探勘

并列篇名

Mining of Leisure Industry Marketing Recommendation Mechanism

作者

陳盈如(Yin-Ju Chen);羅健銘(Jian-Ming Lo)

关键词

資料採礦 ; 推薦機制 ; 電子口碑行銷 ; data mining ; recommendation mechanism ; electronic word-of-mouth

期刊名称

Electronic Commerce Studies

卷期/出版年月

14卷3期(2016 / 09 / 30)

页次

389 - 407

内容语文

繁體中文

中文摘要

隨著時代的變遷,資訊科技的進步及消費習慣的改變,大家對生活品質越來越重視,連帶地消費者的生活型態及休閒的習慣也跟著調整。當消費者選擇考慮的因素為簡單的時候,決策者很容易的靠著經驗法則判斷消費者的決定;但是當消費者選擇的種類以及考慮的因素增多的時候,決策者如何從資料分析以及消費者的經驗法則來判斷消費者的行為,儼然變成一個重要的課題。不同於過去關聯規則的演算過程,本研究針對不同的旅遊天數、旅遊目的以及旅遊動機,利用分群後尋找關聯所產生的順序關聯規則組合,經過演算模式的建立、修正及改進,裨益發展推薦機制,輔以現代科技所賜予的便利,進而從電子口碑部分強化並發展觀光。

英文摘要

With the changing times, thanks to the advancing technologies and the changing consumption characteristics, the life style and recreation habit of consumers are keeping changed due to the request of higher quality of life. Contrast to the old time consumers with their simple factors in choosing product that they purchased, nowadays' consumers have far more factors need to be considered before they make their decisions in choosing products. How the business decision makers predicting the behaviors of consumers by data analytics and the rule of thumb has become an important issue. Unlike conventional association rules' process, this study focuses on tourists for their available dates, purpose and motive of touring. Through the association sequence set, which is generated by clustering method, the association rules are found. The model is then developed, with the following improvement. The recommendation mechanism can be established for enhancing the tourism with the aid of modern technology.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
参考文献
  1. 維基百科,自由的百科全書:維基百科。存取日期:2016 年9 月11 日,取自 https://zh.wikipedia.org/zh-tw/%E4%BC%91%E9%96%92%E6%B4%BB%E5%8B%95
  2. Agrawal, R.,Imielinski, T.,Swami, A.(1993).Mining association rules between sets of items in large database.Proceedings of the ACM SIGMOD Conference on Management of Data,Washington DC, USA:
  3. Bodapati, A. V.(2008).Recommendation systems with purchase data.Journal of Marketing Research,45(1),77-93.
  4. Celotto, E.,Ellero, A.,Ferretti, P.(2012).Short-medium term tourist services demand forecasting with rough set theory.Procedia Economics and Finance,3,62-67.
  5. Chen, H. J.,Chen, P. J.,Okumus, F.(2013).The relationship between travel constraints and destination image: A case study of Brunei.Tourism Management,35,198-208.
  6. Chen, S. C.,Yen, D. C.,Hwang, M. I.(2012).Factors influencing the continuance intention to the usage of Web 2.0: An empirical study.Computers in Human Behavior,28(3),933-941.
  7. Chen, Y. L.,Weng, C. H.(2008).Mining association rules from imprecise ordinal data.Fuzzy Sets and Systems,159(4),460-474.
  8. Cheung, C. M.,Lee, M. K.(2012).What drives consumers to spread electronic word of mouth in online consumer-opinion platforms.Decision Support Systems,53(1),218-225.
  9. Chou, C. L.,Lin, L. F.(2014).A social recommender mechanism for location-based group commerce.Information Sciences,274(1),125-142.
  10. Day, G. S.(1971).Attitude change media and word of mouth.Journal of Advertising Research,11(6),31-40.
  11. Dumazedier(1967).Toward A Society of Leisure.New York:Free press.
  12. El-Gohary, H.(2012).Factors affecting E-Marketing adoption and implementation in tourism firms: An empirical investigation of Egyptian small tourism organizations.Tourism Management,33(5),1256-1269.
  13. Fayyad, U.,Piatetsky-Shapiro, G.,Smyth, P.(1996).The KDD process for extracting useful knowledge from volumes of data.Communications of the ACM,39(11),27-34.
  14. Frawley, W. J.,Piatetsky-Shapiro, G.,Matheus, C. J.(1992).Knowledge discovery databases: An overview.AI Magazine,13(3),57-70.
  15. Hanson, W. A.(2000).Principles of Internet Marketing.Ohio:South-Western College Publishing.
  16. Hennig-Thurau, T.,Gwinner, K. P.,Walsh, G.,Gremler, D. D.(2004).Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet.Journal of Interactive Marketing,18(1),38-52.
  17. Katz, E.,Lazarsfeld, P. F.(1955).Personal influence: The Part Played by People in the Flow of Mass Communications.New York:The Free Press.
  18. Kim, K. J.,Cho, S. B.(2007).Personalized mining of web documents using link structures and fuzzy concept networks.Applied Soft Computing,7(1),398-410.
  19. Kwon, S. J.,Chung, N. H.(2010).The moderating effects of psychological reactance and product involvement on online shopping recommendation mechanisms based on a causal map.Electronic Commerce Research and Applications,9(6),522-536.
  20. Lazcorreta, E.,Botella, F.,Fernández-Caballero, A.(2008).Towards personalized recommendation by Two-Step modified Apriori data mining algorithm.Expert Systems With Applications,35(3),1422-1429.
  21. Lee, K. C.,Kwon, S.(2008).Online shopping recommendation mechanism and its influence on consumer decisions and behaviors: A causal map approach.Expert Systems With Applications,35(4),1567-1574.
  22. Liao, S. H.,Chu, P. H.,Chen, Y. J.,Chang, C. C.(2012).Mining customer knowledge for exploring online group buying behavior.Expert Systems with Applications,39(3),3708-3716.
  23. Liu, W.,Nishio, T.,Shinkuma, R.,Takahashi, T.(2014).Adaptive resource discovery in mobile cloud computing.Computer Communications,50,119-129.
  24. Lovett, M. J.,Peres, R.,Shachar, R.(2013).On brands and word of mouth.Journal of Marketing Research,50(4),427-444.
  25. Mikut, R.,Reischl, M.(2001).Data mining tools.Wires Data Mining and Knowledge Discovery,1(5),431-443.
  26. Murphy, L.,Moscardo, G.,Benckendorff, P.,Pearce, P.(2011).Evaluating tourist satisfaction with the retail experience in a typical tourist shopping village.Journal of Retailing and Consumer Services,18(4),302-310.
  27. Resnick, P.,Varian, H.R.(1997).Recommendation systems.Communication of ACM,40(3),56-58.
  28. Rong, J.,Vu, H. Q.,Law, R.,Li, G.(2012).A behavioral analysis of web sharers and browsers in Hong Kong using targeted association rule mining.Tourism Management,33(4),731-740.
  29. Schafer, J. B.,Konstan, J.,Riedl, J.(1999).Recommender systems in e-commerce.Proceedings of the 1st ACM conference on Electronic commerce
  30. Song, H.(2015).Correlation analysis between rural tourism and agricultural food marketing.Advance Journal of Food Science and Technology,7(10),798-803.
  31. Sutanto, J.,Jiang, Q.(2013).Knowledge seekers' and contributors' reactions to recommendation mechanisms in knowledge management systems.Information & Management,50(5),258-263.
  32. Trusov, M.,Bucklin, R. E.,Pauwels, K.(2009).Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site.Journal of Marketing,73(5),90-102.
  33. Versichele, M.,de Groote, L.,Claeys Bouuaert, M.,Neutens, T.,Moerman, I.,Van de Weghe, N.(2014).Pattern mining in tourist attraction visits through association rule learning on bluetooth tracking data: A case study of ghent, belgium.Tourism Management,44,67-81.
  34. 呂亞蒨(2007)。碩士論文(碩士論文)。嘉義市,國立嘉義大學資訊管理學系碩士班。
  35. 李俊毅(2011)。碩士論文(碩士論文)。新竹市,中華大學資訊管理學系碩士班。
  36. 林佩璇(2012)。碩士論文(碩士論文)。桃園市,銘傳大學觀光事業學系碩士在職專班。
  37. 林政輝(2010)。碩士論文(碩士論文)。桃園市,中原大學資訊管理研究所。
  38. 張云濤、龔玲(1997)。資料探勘原理與技術。台北:五南圖書出版股份有限公司。
  39. 陳羿妙(2012)。博士論文(博士論文)。臺北市,國立臺灣科技大學企業管理系。
  40. 陳順宇(2005)。多變量分析。台北:華泰書局。
  41. 曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005)。資料探勘Data mining。台北市:旗標。
  42. 黃一家(2012)。碩士論文(碩士論文)。彰化市,國立彰化師範大學企業管理學系。
  43. 楊明玉、番承懷(2011)。顧客關係管理導入五大人格特質與資料探勘之研究─以人壽保險業為例。資訊管理展望,3(2),151-169。
  44. 蕭涵中(2013)。碩士論文(碩士論文)。臺北市,中國文化大學觀光事業學系。
  45. 簡禎富、許嘉裕(2014)。資料挖礦與大數據分析。台北市:前程文化。
被引用次数
  1. 羅健銘,陳盈如(2020)。探勘大學生的壓力來源推薦紓壓運動。Journal of Data Analysis,15(3),27-44。