题名

推薦系統之研究內涵與主要研究議題

并列篇名

Recommender Systems: Perspective and Main Research Themes

作者

陳宗天(Tsung Teng Chen);王俐涵(Li Han Wang)

关键词

推薦系統 ; 引文分析 ; 智識建構 ; 知識領域視覺化 ; recommender system ; citation analysis ; intellectual structure ; knowledge domain visualization

期刊名称

Electronic Commerce Studies

卷期/出版年月

16卷2期(2018 / 06 / 30)

页次

161 - 188

内容语文

繁體中文

中文摘要

隨著資訊的快速累積,過多的資訊引起資訊超載的問題,使人們無法在短時間內找尋符合自己需求的資訊,因此衍生推薦系統的應用。推薦系統是指能幫助消費者即時找到可能感興趣的資訊。本研究之目的為利用引文分析方法,使用Microsoft Academic資料庫蒐集文獻資料,透過因素分析及路徑搜尋法,產生此領域的智識結構圖並呈現其相關的重要議題之關聯,進而分析推薦系統之相關研究議題之內涵。從研究結果得知,學者對推薦機制的改善與延伸始終為主要的研究議題,希望可藉改良之推薦機制得到更好的推薦效果,另外,冷啟動的問題亦為重要的議題,綜合研究結果,倘若學者欲探討推薦系統領域與相關研究議題,可以推薦機制、推薦效能評估、推薦應用與推薦系統的運作原理為基礎來進行。

英文摘要

With the rapid accumulation of information and the problem of information overloading, individuals who want to find the information they need won't be able to find it quickly. The recommender systems can help us to cope the information overloading issue, which makes it an important research filed. Recommender systems enable businesses to recommend products or other information in real time. In this paper, we use of citation analysis method to derive the intellectual structure diagram for the research field of recommender systems. The citation analysis is carried out by using the Microsoft Academic database. The results of this study showed that scholars often focus on improving the recommendation mechanism for better performance. In addition, the problem of cold-start issue in a recommender system is also an important study. To summarize the result of the analysis, if a scholar interested in recommender systems should start from the study of recommendation mechanism, recommender systems evaluation, the application of recommender systems, and explaining how recommender systems work.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
参考文献
  1. Abrial, J.-R.(2009).Faultless systems: Yes we can!.Computer,42(9),30-36.
  2. Adomavicius, G.,Sankaranarayanan, R.,Sen, S.,Tuzhilin, A.(2005).Incorporating contextual information in recommender systems using a multidimensional approach.ACM Transactions on Information Systems (TOIS),23(1),103-145.
  3. Adomavicius, G.,Tuzhilin, A.(2015).Context-Aware Recommender Systems Recommender Systems Handbook (pp. 191-226).Springer.
  4. Ahn, H. J.(2008).A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem.Information Sciences,178(1),37-51.
  5. Al-Shamri, M. Y. H.,Bharadwaj, K. K.(2008).Fuzzy-genetic approach to recommender systems based on a novel hybrid user model.Expert Systems with Applications,35(3),1386-1399.
  6. Balabanović, M.,Shoham, Y.(1997).Fab: content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
  7. Barragáns-Martínez, A. B.,Costa-Montenegro, E.,Burguillo, J. C.,Rey-López, M.,Mikic-Fonte, F. A.,Peleteiro, A.(2010).A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition.Information Sciences,180(22),4290-4311.
  8. Basu, C.,Hirsh, H.,Cohen, W.(1998).Recommendation as Classification: Using Social and Content-Based Information in Recommendation.Paper presented at the Aaai/iaai
  9. Bell, R.,Koren, Y.,Volinsky, C.(2007).Modeling relationships at multiple scales to improve accuracy of large recommender systems.Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining,San Jose, CA, USA:
  10. Blei, D. M.,Ng, A. Y.,Jordan, M. I.(2003).Latent dirichlet allocation.Journal of Machine Learning Research,3,993-1022.
  11. Bobadilla, J.,Hernando, A.,Ortega, F.,Gutiérrez, A.(2012).Collaborative filtering based on significances.Information Sciences,185(1),1-17.
  12. Cao, Y.,Li, Y.(2007).An intelligent fuzzy-based recommendation system for consumer electronic products.Expert Systems with Applications,33(1),230-240.
  13. Chen, C.,Morris, S.(2003).Visualizing evolving networks: Minimum spanning trees versus pathfinder networks.IEEE Symposium on Information Visualization 2003,Seattle, WA, USA:
  14. Chen, T. T.(2012).The development and empirical study of a literature review aiding system.Scientometrics,92(1),105-116.
  15. Cho, E.,Myers, S. A.,Leskovec, J.(2011).Friendship and mobility: user movement in location-based social networks.17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Diego, CA, USA:
  16. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combing content-based and collaborative filters in an online newspaper. Retrieved December 25, 2017, from: https://digitalcommons.wpi.edu/computerscience-pubs/194
  17. Das, A. S.,Datar, M.,Garg, A.,Rajaram, S.(2007).Google news personalization: Scalable online collaborative filtering.the 16th International Conference on World Wide Web,Banff, Alberta, Canada:
  18. De Campos, L. M.,Fernández-Luna, J. M.,Huete, J. F.,Rueda-Morales, M. A.(2010).Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks.International Journal of Approximate Reasoning,51(7),785-799.
  19. Del Olmo, F. H.,Gaudioso, E.(2008).Evaluation of recommender systems: A new approach.Expert Systems with Applications,35(3),790-804.
  20. Garfield, E.,Malin, M. V.,Small, H.(1983).Citation data as science indicators.Toward a Metric of Science: The Advent of Science Indicators,NY.:
  21. Ge, M.,Delgado-Battenfeld, C.,Jannach, D.(2010).Beyond accuracy: Evaluating recommender systems by coverage and serendipity.Proceedings of the Fourth ACM Conference on Recommender Systems,Barcelona, Spain:
  22. Gong, S.(2010).A collaborative filtering recommendation algorithm based on user clustering and item clustering.Journal of Software,5(7),745-752.
  23. Herlocker, J. L.,Konstan, J. A.,Borchers, A.,Riedl, J.(1999).An algorithmic framework for performing collaborative filtering.22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Berkeley, CA, USA:
  24. Herlocker, J. L.,Konstan, J. A.,Riedl, J.(2000).Explaining collaborative filtering recommendations.2000 ACM Conference on Computer Supported Cooperative Work,Philadelphia, Pennsylvania, USA.:
  25. Herlocker, J. L.,Konstan, J. A.,Terveen, L. G.,Riedl, J. T.(2004).Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems (TOIS),22(1),5-53.
  26. Hu, Y.,Koren, Y.,Volinsky, C.(2008).Collaborative filtering for implicit feedback datasets.2008 Eighth IEEE International Conference on Data Mining,Pisa, Italy:
  27. Isinkaye, F.,Folajimi, Y.,Ojokoh, B.(2015).Recommendation systems: Principles, methods and evaluation.Egyptian Informatics Journal,16(3),261-273.
  28. Jamali, M.,Ester, M.(2009).Trustwalker: A random walk model for combining trust-based and item-based recommendation.15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Paris, France:
  29. Jamali, M.,Ester, M.(2010).A matrix factorization technique with trust propagation for recommendation in social networks.Fourth ACM Conference on Recommender Systems,Barcelona, Spain:
  30. Karatzoglou, A.,Amatriain, X.,Baltrunas, L.,Oliver, N.(2010).Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering.Fourth ACM Conference on Recommender Systems,Barcelona, Spain:
  31. Kim, H.-N.,Alkhaldi, A.,El Saddik, A.,Jo, G.-S.(2011).Collaborative user modeling with user-generated tags for social recommender systems.Expert Systems with Applications,38(7),8488-8496.
  32. Kleinberg, J. M.(1999).Authoritative sources in a hyperlinked environment.Journal of the ACM (JACM),46(5),604-632.
  33. Konstas, I.,Stathopoulos, V.,Jose, J. M.(2009).On social networks and collaborative recommendation.32nd International ACM SIGIR Conference on Research and Development in Information Retrieval,Boston, MA, USA:
  34. Lee, S. K.,Cho, Y. H.,Kim, S. H.(2010).Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations.Information Sciences,180(11),2142-2155.
  35. Liu, F.,Lee, H. J.(2010).Use of social network information to enhance collaborative filtering performance.Expert Systems with Applications,37(7),4772-4778.
  36. Liu, H.,Zhang, H.,Hui, K.,He, H.(2015).Overview of context-aware recommender system research.3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015)
  37. Lu, J.,Shambour, Q.,Xu, Y.,Lin, Q.,Zhang, G.(2010).BizSeeker: a hybrid semantic recommendation system for personalized government-to-business e-services.Internet Research,20(3),342-365.
  38. Ma, H.,King, I.,Lyu, M. R.(2009).Learning to recommend with social trust ensemble.Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval,Boston, Massachusetts, USA.:
  39. Ma, H.,Yang, H.,Lyu, M. R.,King, I.(2008).Sorec: social recommendation using probabilistic matrix factorization.Proceedings of the 17th ACM conference on Information and knowledge management,Napa Valley, California, USA:
  40. Ma, H.,Zhou, D.,Liu, C.,Lyu, M. R.,King, I.(2011).Recommender systems with social regularization.Proceedings of the fourth ACM international conference on Web search and data mining,Hong Kong, China:
  41. Marchionini, G.,White, R. W.(2009).Information-seeking support systems [guest editors' introduction].Computer,42(3),30-32.
  42. Massa, P.,Avesani, P.(2007).Trust-aware recommender systems.Proceedings of the 2007 ACM conference on Recommender systems,Minneapolis, Minnesota, USA:
  43. McNee, S. M.,Riedl, J.,Konstan, J. A.(2006).Being accurate is not enough: how accuracy metrics have hurt recommender systems.Proceedings of the CHI'06 extended abstracts on Human factors in computing systems,NY, USA.:
  44. McPherson, M.,Smith-Lovin, L.,Cook, J. M.(2001).Birds of a feather: Homophily in social networks.Annual Review of Sociology,27(1),415-444.
  45. O'Donovan, J.,Smyth, B.(2005).Trust in recommender systems.Proceedings of the 10th international conference on Intelligent user interfaces,San Diego, California, USA.:
  46. Pacyna, P.,Rutkowski, A.,Sarma, A.,Takahashi, K.(2009).Trusted identity for all: Toward interoperable trusted identity management systems.Computer,42(5),30-32.
  47. Porcel, C.,Herrera-Viedma, E.(2010).Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries.Knowledge-Based Systems,23(1),32-39.
  48. Porcel, C.,López-Herrera, A. G.,Herrera-Viedma, E.(2009).A recommender system for research resources based on fuzzy linguistic modeling.Expert Systems with Applications,36(3),5173-5183.
  49. Porcel, C.,Moreno, J. M.,Herrera-Viedma, E.(2009).A multi-disciplinar recommender system to advice research resources in university digital libraries.Expert Systems with Applications,36(10),12520-12528.
  50. Porcel, C.,Tejeda-Lorente, A.,Martínez, M.,Herrera-Viedma, E.(2012).A hybrid recommender system for the selective dissemination of research resources in a technology transfer office.Information Sciences,184(1),1-19.
  51. Punch, W. F., III,Goodman, E. D.,Pei, M.,Chia-Shun, L.,Hovland, P. D.,Enbody, R. J.(1993).Further Research on Feature Selection and Classification Using Genetic Algorithms.Paper presented at the ICGA
  52. Rashid, A. M.,Albert, I.,Cosley, D.,Lam, S. K.,McNee, S. M.,Konstan, J. A.,Riedl, J.(2002).Getting to know you: learning new user preferences in recommender systems.Proceedings of the 7th international conference on Intelligent user interfaces,San Francisco, California, USA:
  53. Rashid, A. M.,Karypis, G.,Riedl, J.(2008).Learning preferences of new users in recommender systems: An information theoretic approach.Acm Sigkdd Explorations Newsletter,10(2),90-100.
  54. Rendle, S.,Freudenthaler, C.,Gantner, Z.,Schmidt-Thieme, L.(2009).BPR: Bayesian personalized ranking from implicit feedback.Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence,Hildesheim, Germany:
  55. Ricci, F.(ed),Rokach, L.(ed),Shapira, B.(ed),Kantor, P.(ed)(2011).Recommender Systems Handbook.MA:Boston Springer.
  56. Sarwar, B.,Karypis, G.,Konstan, J.,Riedl, J.(2001).Item-based collaborative filtering recommendation algorithms.Proceedings of the 10th international conference on World Wide Web,Hong Kong:
  57. Schafer, J. B.,Konstan, J.,Riedl, J.(1999).Recommender systems in e-commerce.Proceedings of the 1st ACM conference on Electronic commerce,Denver, Colorado:
  58. Schvaneveldt, R. W.(1990).Pathfinder Associative Networks: Studies in Knowledge Organization.Ablex Publishing.
  59. Serrano-Guerrero, J.,Herrera-Viedma, E.,Olivas, J. A.,Cerezo, A.,Romero, F. P.(2011).A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0.Information Sciences,181(9),1503-1516.
  60. Small, H.,Griffith, B. C.(1974).The structure of scientific literatures I: Identifying and graphing specialties.Science Studies,4(1),17-40.
  61. Stanney, K. M.,Kennedy, R. S.(1997).The psychometrics of cybersickness.Communications of the ACM,40(8),66-68.
  62. Symeonidis, P.,Nanopoulos, A.,Manolopoulos, Y.(2008).Providing justifications in recommender systems.IEEE Transactions on Systems Cybernetics-Part A: Systems and Humans,38(6),1262-1272.
  63. Takeuchi, Y.,Sugimoto, M.(2006).CityVoyager: an outdoor recommendation system based on user location history.Proceedings of the International Conference on Ubiquitous Intelligence and Computing,Japan:
  64. Vargas, S.,Castells, P.(2011).Rank and relevance in novelty and diversity metrics for recommender systems.Proceedings of the fifth ACM conference on Recommender systems,Chicago, Illinois, USA:
  65. Victor, P.,Cornelis, C.,De Cock, M.,Da Silva, P. P.(2009).Gradual trust and distrust in recommender systems.Fuzzy Sets and Systems,160(10),1367-1382.
  66. Wang, J.,De Vries, A. P.,Reinders, M. J.(2006).Unifying user-based and item-based collaborative filtering approaches by similarity fusion.Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval,Seattle, Washington, USA:
  67. Ye, M.,Yin, P.,Lee, W.-C.,Lee, D.-L.(2011).Exploiting geographical influence for collaborative point-of-interest recommendation.Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval,Beijing, China:
  68. Zhou, K.,Yang, S.-H.,Zha, H.(2011).Functional matrix factorizations for cold-start recommendation.Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval,Beijing, China:
  69. Zhou, T.,Kuscsik, Z.,Liu, J.-G.,Medo, M.,Wakeling, J. R.,Zhang, Y.-C.(2010).Solving the apparent diversity-accuracy dilemma of recommender systems.Proceedings of the National Academy of Sciences,107(10),4511-4515.