题名

量表語意模糊數演算及其計分比較分析

并列篇名

The Algorithm of Fuzzy Linguistic Numbers and Its Comparison of Scoring

DOI

10.7037/JNTTC.200312.0279

作者

林原宏(Yuan-Horng Lin)

关键词

二元邏輯 ; 李克特式量表 ; 模糊理論 ; 模糊語意變數 ; binary logic ; fuzzy linguistic variable ; fuzzy theory ; Likert scale

期刊名称

臺中師院學報

卷期/出版年月

17卷2期(2003 / 12 / 01)

页次

279 - 304

内容语文

繁體中文

中文摘要

本研究旨在探討量表的傳統計分和模糊語意計分之特性,研究者以實證資料和資料模擬兩方面,在有無「解模糊化」和「模糊隸屬度加權」的情形下,分析比較傳統計分和三種模糊語意計分之信度與效度差異。 在實證資料方面,以模糊集群(fuzzy cluster)之目標函數演算法(objective function algorithm),建立模糊語意量表的模糊數參數,並將模糊數解模糊化以供計分之用。實證資料的分析中,顯示模糊語意計分的信度比傳統計分為高,且模糊語意計分中,以兼具「解模糊化」和「模糊隸屬度加權」的計分方式Ⅲ之信度與效度最高。 在資料模擬方面,以題數、人數和潛在特質分配型式為因子設計,分別比較傳統計分和三種模糊語意計分之信度差異。模擬結果與實證分析相同,亦即模糊語意計分的信度比傳統計分為高,而三種模糊語意計分中,亦以兼具「解模糊化」和「模糊隸屬度加權」的計分方式Ⅲ之信度最高。 根據本研究實證和模擬所獲得的一致性結果,顯示模糊語意計分有其應用與發展之處。而本文利用模糊集群的目標函數演算法,所建立模糊語意之模糊數,亦可供後續進一步應用與研究之參考。最後,本文根據研究結果,提出未來進一步研究和應用發展之建議。

英文摘要

The purpose of this study is to evaluate the reliability and validity of fuzzy linguistic variables. By the method of empirical study and data simulation, we will realize the characteristics of three kinds of fuzzy scoring. In the empirical study, the objective function algorithm of fuzzy cluster is used to calculate the parameters of fuzzy numbers and the empirical data set is gotten from the questionnaire of “The Teacher Faith Scale.” For the purpose of fuzzy scoring, the fuzzy numbers are defuzzied. Form the results of Cronbach’s reliability, it shows that there is difference between traditional scoring and fuzzy scoring. The Cronbach’s reliability and validity of fuzzy scoring is larger than that of traditional scoring. In addition, there is also difference among three kinds of fuzzy scoring. As for the fuzzy scoring, when the “defuzzification” and “weighted membership” are considered, the Cronbach’s reliability and validity of this kind is the highest. Moreover, in the study of data simulation, the factors contain “number of items”, “number of task-takers”, and “distribution of latent.” According to the comparisons of the Cronbach’s reliability, the results of data simulation was similar to those of empirical study. It also appears that Cronbach’s reliability of fuzzy scoring is larger than that of traditional scoring. The factors, “defuzzification” and “weighted membership”, will prompt the reliability of fuzzy scoring. From results of empirical study and data simulation, we can realize that the reliability and validity of fuzzy linguistic scoring are better than those of traditional scoring. Finally, based upon the findings of this study, some recommendations for further research are suggested.

主题分类 人文學 > 人文學綜合
社會科學 > 社會科學綜合
社會科學 > 教育學
参考文献
  1. 林信惠、蕭文峰(2001)。模糊口語評估尺度之歸屬函數建構及特性探討。資訊管理學報,8,1-19。
    連結:
  2. 連經宇(2001)。家戶購屋決策影響因素之初探研究-結合模糊語意的因素分析法之實證比較。台灣土地研究,4,29-51。
    連結:
  3. Agresti, A.,Finlay, B.(1997).Statistical methods for the social sciences.New York:Prentice-Hall.
  4. Bagnoli, C.,Smith, H. C.(1998).The theory of fuzzy logic and its application to real estate valuation.Journal of Real Estate Research,16(2),169-199.
  5. Bezdek, J. C.(1981).Pattern recognition with fuzzy objective function algorithm.New York:Plenum.
  6. Chen, S. H.,Hwang, C. L.(1992).Fuzzy multiple attribute decision making: methods and applications.New York:Springer-Verlag.
  7. Costas, C. S. L.,Maranon, P. P.,Cabrera, J. A. H.(1994).Application of diffuse measurement to the evaluation of psychological structures.Quality and Quanty,28,305-313.
  8. Dubois, D.,Prade, H.(1983).Ranking fuzzy number in the setting of possibility theory.Information Science,30,183-224.
  9. Herrera, F.,Herrera-Viedma, E.(2000).Linguistic decision analysis: steps for solving decision problems under linguistic information.Fuzzy Sets and Systems,116,67-82.
  10. Hersh, H. M.,Caramazza, A. A.(1976).A fuzzy set approach to modifiers and vagueness in natural language.Journal of Experimental Psychology,105,254-276.
  11. Hesketh, B.,Pryor, R.,Gleitzman, M.,Hesketh, T.,T. Zetenyi(ed.)(1988).Fuzzy Sets in Psychology.New York:North-Holland.
  12. Ishikawa, A.,Amagasa, T.,Tamizawa, G.,Totsuta, R.,Mieno, H.(1993).The max-mm delphi method and fuzzy Delphi method via fuzzy integration.Fuzzy Sets and Systems,55,241-253.
  13. Klir, G. J.,Folger, T. A.(1988).Fuzzy sets, uncertainty and information.NJ:Prentice-Hall.
  14. Klir, G. J.,Yuan, B.(1995).Fuzzy sets and fuzzy logic theory and application.NJ:Prentice-Hall.
  15. Law, C. K.(1997).A fuzzy logical model to aggregate several heterogeneous educational grades from a reductionist grading scheme.Proceedings of 8 th International Conference on the Teaching of Mathematical Modeling and Applications
  16. Law, C. K.(1996).Using fuzzy numbers in educational grading system.Fuzzy Sets and Systems,83,311-323.
  17. Leg, E. S.,Li, R. J.(1988).Comparison of fuzzy numbers based on the probability measure of fuzzy events.Computer and Mathematics with Applications,15,887-896.
  18. Liang, G. S.,Wang, M. J.(1991).A fuzzy multicriteria decision making method for facility site selection.Internation Journal of Production Research,29(1),2313-2330.
  19. Manton, K. G.,Woodbury, M. A.,Tolley, H. D.(1994).Statistical applications using fuzzy sets.New York:John Wiley & Sons, Inc..
  20. Olsson, U.,Drasgrow, F.,Dorans, N. J.(1982).The polyserical correlation coefficient.Psychometrics,47,337-347.
  21. Pryor, R. G. L.,Hesketh, B.,Gleitzman, M.(1989).Making things clearer by making them fuzzy: counseling illustrations of a fuzzy graphic rating scale.The career development quarterly,38,136-146.
  22. Turksen I. B.,J. Kacprzyk (Eds.),M. Fedrizzi (Eds.)(1988).Combing fuzzy imprecision with probabilistic uncertainty in decision making.New York:Springer-Verlag.
  23. Turksen, I. B.(1991).Measurement of membership functions and their acquisition.Fuzzy Sets and Systems,40,5-38.
  24. Wang, S.(1994).Generating fuzzy membership functions: a monotonic neural network model.Fuzzy Sets and Systems,61,71-81.
  25. Yamashita, T.(1997).On a support system for human decision making by the combination of fuzzy reasoning and fuzzy structural modeling.Fuzzy Sets and Systems,87,257-263.
  26. Yen, C. L.(1996).Using fuzzy sets in developing mathematical learning progress indicator.The proceedings of National Science Council (part D),6,57-64.
  27. Zadeh, L. A.(1995).Discussion: probability theory and fuzzy logic are complementary rather than competitive.Technometrics,37(3),271-276.
  28. Zadeh, L. A.(1972).A fuzzy set theoretical interpretation of hedges.Journal of Cybernetics,2,4-34.
  29. Zimmermann, H. J.(1991).Fuzzy set theory and its application.London:Kluwer Academic.
  30. 王元仁(2000)。以模糊理論建構以技職為導向之課程單元評估模式。教育研究資訊,8(3),1-12。
  31. 王景南、王金城(2000)。籃球教練與團隊配適性之模糊統計分析。國立編譯館館刊,29(2),319-338。
  32. 王朝茂(1996)。教師信念量表。台北市:心理出版社有限公司。
  33. 何偉雲(1995)。學生學習成就的模糊統計分析。屏東師院學報,8,167-180。
  34. 何榮桂、籃如玉(2001)。乏晰語義辨別在職業認知輔導之應用。第五屆華人社會心理與教育測驗學術研討會論文,台北市:
  35. 吳柏林(1994)。模糊統計分析:問卷調查研究之新方向。國立政治大學研究通訊,2,65-80。
  36. 吳柏林、曾能芳(1998)。模糊迴歸參數估計及在景氣對策信號之分析應用。中國統計學報,36(4),399-420。
  37. 吳柏林、楊文山(1997)。社會科學計量方法發展與應用。中央研究院中山人文社會科學研究所。
  38. 林原宏(2001)。模糊語意變數量表計分之信度模擬分析。測驗統計年刊,9,193-219。
  39. 林原宏(2002)。模糊語意變數的多準則評量之研究。國立台中師範學報,16,451-470。
  40. 林原宏、楊慧玲(2002)。模糊語意量表與傳統量表計分之模擬比較分析。第四屆華人心理學家學術研討會暨第六屆華人心理與行為科際學術研討會,台北市:
  41. 徐村和、朱國明、詹惠君(2001)。模糊語意尺度之研究。企叢管理學報,51,27-52。
  42. 張鈿富、孫慶珉(1993)。學習成就評量與模糊模式之分析。國立政治大學學報(社會科學類上冊),67,57-73。
  43. 陳俊學(2000)。碩士論文(碩士論文)。實踐大學企業管理研究所。
  44. 陳昭宏(1998)。以Fuzzy演算法分析評量用詞對問卷調查之影響。東方工商學報,21,76-82。
  45. 劉天賜(1992)。博士論文(博士論文)。國立清華大學工業工程研究所。
  46. 鄭景俗、楊國隆(1998)。模糊集合論在教育評分等級系統之應用。模糊系統學刊,4(2),81-89。
  47. 羅昭強(2000)。模糊理論在數學科基本能力測驗上的應用。八十九學年度師範學院教育學術論文發表會論文集,新竹市:
被引用次数
  1. 鄧維兆、廖明宗、林芷郁(2006)。模糊理論與自動櫃員機管理屬性之確認。臺灣金融財務季刊,7(4),29-52。
  2. 黃志強,許育文,林婉玉,吳宜樺,余金燕(2013)。應用模糊理論於醫院門診服務品質滿意度評比。大仁學報,43,63-79。
  3. 葉晉嘉、翁興利、吳濟華(2007)。德菲法與模糊德菲法之比較研究。調查研究:方法與應用,21,31-58。
  4. (2006)。模糊理論與自動櫃員機管理屬性之確認。臺灣金融財務季刊,7(4),29-52。
  5. (2009)。以模糊聚類方法分析數學錯誤概念組型。教育研究與發展期刊,5(4),159-186。