题名

運用直接積分法研究複合圓板的非線性振動

并列篇名

Nonlinear Vibrations of Composite Circular Plate with a Rigid Central Mass-Using Direct Integration Method

DOI

10.29688/MHJ.200707.0013

作者

呂鴻猷(Hung-Yu Lu);張國平(Kuo-Ping Chang)

关键词

非線性振動 ; 有限元素法 ; Newmark ; 直接積分法 ; ANSYS ; nonlinear vibrations ; finite element method ; Newmark ; direct integration method ; ANSYS

期刊名称

明新學報

卷期/出版年月

33期(2007 / 07 / 01)

页次

227 - 238

内容语文

繁體中文

中文摘要

本研究係探討圓心具剛性質量之複合圓板的非線性振動。文中採用有限元素法並運用漢彌頓法則(Hamilton's principle)推導系統的運動方程式,由於運動方程式具非線性性質,其複雜且具耦合性質的數學方程式,不易求取數值結果。因此,本研究運用紐馬克(Newmark)直接積分法,將運動方程式對時間積分,以取得振動週期,再換算成頻率響應。本研究以有限元素分析軟體-ANSYS,作為建構有限元素模型和求解數值之工具。為確保數值精確度,本文使用增量疊代法將總振幅分為數個振幅增量,再運用直接積分法對時間積分,以獲得非線性振型,進而再加以疊代運算,直至振型與頻率響應值收斂至預設之模數。本研究採用ANSYS之APDL程式建模並作疊代分析,此模式可有效應用於相關問題之研究。

英文摘要

Nonlinear vibrations of polar orthotropic circular plate with central rigid mass were investigated in this study. The finite element method and Hamilton's principle were applied to formulate the governing equation of motion for the system. Due to the complex nonlinear and coupled properties of differential equations, the numerical results are not easy to obtain. In this study, Newmark direct integration method was applied to integrate motion equations with respect to time, and the frequency responses were obtained by inverting the period of vibration after completing one full cycle of time integration. The finite element software package, ANSYS, was used as a tool to create model and obtain the numerical results. To insure the accuracy of numerical results, the increment-iteration method was applied. The total amplitude was divided into several increments of small amplitude, and then the direct integration was used to integrate with respect to time to obtain the mode shapes and frequency responses. The preceding procedure is iterated until the mode shapes and frequency responses converge to a defined norm. The programmable language APDL of ANSYS, was used to create model and execute the iterations of the analysis, and this model can be effectively applied to relative researches.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Bathe, K.J.(1996).Finite Element Procedures.New York:Prentice Hall.
  2. Desai, C. S.,Abel, J. F.(1972).Introduction to the Finite Element Method-a Numerical Method for Engineering Analysis.Van Nostrand Reinhold co..
  3. Dumir, P.C.,Kumar, C.R.,Gandi, M.L.(1985).Nonlinear Axisymmetric Vibration of Orthotropic Thin Annular Plates with a rigid central mass.Journal of the Acoustic Society of America,77(6),2184-2187.
  4. Gorman, D.G.(1982).Natural Frequencies of Polar Orthotropic Uniform Annular Plates.Journal of Sound and Vibration,80(1),145-154.
  5. Handelman, G.,Cohen, H.(1957).On the Effect of the Addition of Mass to Vibrating Systems.Proceedings of 9th International Congress of Applied Mechanics,7,509-516.
  6. Huang, C.L.D.,Huang, S.T.(1989).Finite Element Analysis of Non-linear Vibration of Circular Plate with a Concentric Rigid Mass.Journal of Sound and Vibration,132(2),215-227.
  7. Huang, C.L.D.,Huang, S.T.(1989).Nonlinear Vibrations of Composite Circular Fixed Plates with a Concentric Rigid Mass.10th International Conference on Structural Mechanics in Reactor Technology
  8. Huang, C.L.D.,Lu, H.Y.(1990).Nonlinear Responses of Clamped Circular Composite Plate.Journal of Reinforced Plastics and Composites,9(6),537-548.
  9. Huang, S.(1998).Non-linear Vibration of a Hinged Orthotropic Circular Plate with a Concentric Rigid Mmass.Journal of Sound and Vibration,214(5),873-883.
  10. Newmark, N.M.(1959).A Method of Computation for Structural Dynamics.Journal of Engineering Mechanics Division,85,67-94.
  11. Rao, G.V.,Raju, K.K.,Raju, I.S.(1976).Finite Element Formulation for the Large Amplitude Free Vibrations of Beams and Orthotropic Circular Plates.Computers & Structures,6,169-172.
  12. Srinivasan, A.V.(1965).Large Amplitude Free Oscillations of Beams and Plates.AIAA J.,3,1951-1953.
  13. Zienkiewicz, O.C.,Taylor, R.L.(1989).The Finite Element Method Fifth edition, Volume 1, The Basis.London:Butterworth-Heinemann Book Company.