题名

不同退火溫度對矽鍺磊晶薄膜之影響研究

并列篇名

Investigation of Silicon Germanium Epitaxial Thin Film under Different Annealing Temperature

DOI

10.29688/MHJ.201002.0003

作者

陳炳茂(Bing-Mau Chen);黃凱懋(K. M. Huang);蕭至宏(C. H. Hsiao);張守進(S. J. Chang)

关键词

矽鍺磊晶薄膜 ; 退火改質 ; 穿遂式電子顯微鏡 ; X光繞射儀 ; 拉曼光譜 ; SiGe ; Annealing ; TEM ; XRD ; Raman spectrometer

期刊名称

明新學報

卷期/出版年月

36卷1期(2010 / 02 / 01)

页次

25 - 32

内容语文

繁體中文

中文摘要

本研究利用超高真空化學氣相沈積法(UHV-CVD)成長矽鍺磊晶薄膜層於六吋矽基板(100)上,其後利用常壓退火爐管於充滿氮氣條件下,在不同退火(Annealing)溫度從200℃提升至800℃之環境進行退火改質,探討在不同退火溫度下之矽鍺磊晶薄膜品質與差異特性。使用穿遂式電子顯微鏡、X光繞射儀、拉曼光譜儀與白光干涉儀分析矽鍺磊晶薄膜受不同溫度退火影響之情形,可由結果得知退火溫度控制的重要性,退火溫度約400℃左右矽鍺磊晶薄膜擁有較好的薄膜品質,過高的退火溫度反而使得矽鍺薄膜品質變差,針對矽鍺薄膜之研究結果未來將有助於提升元件效能。

英文摘要

The silicon germanium (SiGe) thin films were grown epitaxial on 6 inch silicon wafer (100) by utilizing ultra-high vacuum chemical vapor deposition (UHV-CVD). The quality of epitaxial SiGe thin films with different annealing temperature and the characteristics are reported in this study. The atmospheric pressure annealing working conditions are filled with nitrogen in different annealing temperature from 200 to 800℃ for progressing annealing modification. The effect of different annealing temperature of the epitaxial silicon germanium thin film can be analyzed by transmission electron microscope (TEM), X-Ray diffraction analyzer, Raman spectrometer and white light interferometer. The importance of temperature control was identified that the annealing temperature of 400 ℃ make the quality of epitaxial silicon germanium thin film become much better, the higher annealing temperature will decrease the quality of epitaxial silicon germanium thin film, and the results of epitaxial silicon germanium thin film will be beneficial to improve the performance of device in the future.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Chang, Yuan-Ming,Dai, Ching-Liang,Cheng, Tsung-Chieh,Hsu, Che-Wei(2008).Applied Surface Science,254,3105.
  2. Cressler, J. D.(1995).IEEE Spectrum Mag,32,49.
  3. Hock, G.,Kohn, E.,Rosenblad, C.,Kanel, H. con,Herzog, H.-J.,Konig, U.(2000).AIP,76,26.
  4. Ishiyama, T.,Yoneyama, S.,Yamashita, Y.,Kamiura, Y.,Date, T.,Hasegawa, T.,Inoue, K.,Okuno, K.(2006).Physica B,376-377,122-125.
  5. Lee, S.W.,Chen, H. C.,Chen, L. J.,Peng, Y. H.,Kuan, C. H.,Cheng, H. H.(2002).J. Appl. Phys,92,6880.
  6. Lueck, M. R.,Andre, C. L.,Pitera, A. J.,Lee, M. L.,Fitzgerald, E. A.,Ringel, S. A.(2006).IEEE Electron Device Letters,27(3)
  7. Meyerson, B. S.(1986).Appl. Phys. Lett,48,797.
  8. Mii, Y. J.,Xie, Y. H.,Fitzgerald, E. A.,Monroe, D.,Theil, F. A.,Weir, B. E.,Feldman, L. C.(1991).Appl. Phys. Lett,59,1611.
  9. Sheng, S. R.,Dion, M.,Rowell, N. L.,Vac, J.(2002).Sci. Technol A,20,1120.
  10. Vernon-Parry, K. D.,Evans-Freeman, J. H.,Dawson, P.(2008).Materials Science and Engineering B,146,231.
  11. Watakabe, H.,Sameshima, T.,Kanno, H.,Sadoh, T.,Miyao, M.(2004).J. Appl. Phys,95,6457.