题名

以基因規劃和人工免疫演算法最佳化薄型晶圓片切割參數

并列篇名

Optimizing Parameters in Dicing Thin Wafers through Genetic Programming and Artificial Immune Algorithms

DOI

10.29688/MHJ.201108.0013

作者

徐志明(Chih-Ming Hsu);陳子安(Zi-An Chen);李漢宗(Han-Tzong Lee)

关键词

晶圓片切割 ; 基因規劃 ; 人工免疫演算法 ; 參數設計 ; Wafer slicing ; Genetic programming ; Artificial immune algorithms ; Parameter design

期刊名称

明新學報

卷期/出版年月

37卷2期(2011 / 08 / 01)

页次

165 - 183

内容语文

繁體中文

中文摘要

電子產品中絕大部分都有IC (integrated circuit)的存在,隨著IC晶片逐漸朝向輕量化、薄型化與高密度發展,為了維持高良率與應有的生產效益,晶圓片切割技術也隨著基本材料的不同以及晶圓片的薄化,在封裝製程上已被視為控制品質成功關鍵的因素之一。然而,以傳統試誤法與工程師自身經驗來決定的切割參數,並無法保證這些切割參數值為最佳設定。本研究結合實驗設計、基因規劃及人工免疫演算法提出一個系統化的晶圓片切割品質最佳化的參數設計程序。同時,透過一個改善薄型晶圓片-蕭特基二極體(Schottky diode)切割製程的實證案例,以驗證所提之演算法的可行性和有效性。驗證結果顯示出薄型晶圓片的切割品質均能接近理想值並完全符合其規格限制。因此,本研究所提的整合式演算程序在解決單一品質特性參數設計問題上是一種有效的工具。

英文摘要

All electronic products almost contain integrated circuits (IC). As the progress of the lightening, thinning and high density of IC, the technologies of wafer dicing has been one of the critical factors which influence the slicing capability. Traditionally, engineers determined the optimal settings of slicing parameters through trial and error or according to their own experience. However, the parameter setting cannot be proven to be real optimal. This study integrated the experimental design, genetic programming and artificial immune algorithms to develop a systematic procedure for optimizing parameter settings in wafer slicing. A case study of improving the slicing process of Schottky diodes was used to demonstrate the feasibility and effectiveness. The experimental results revealed that the cracks in both front and back sides of wafers can fulfill the specifications. Hence, the proposed procedure can be considered an effective method for resolving a parameter design problem with single quality characteristic.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Aggarwal, A.,Singh, H.,Kumar, P.,Singh, M.(2008).Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function.Journal of Materials Processing Technology,205(1-3),42-50.
  2. Chaware, R.,Hoang, L.(2006).Reliability improvement of 90nm large flip chip low-k die via dicing and assembly process optimization.Electronics Packaging Technology Conference Proceedings
  3. Chen, W.-C.,Fu, G.-L.,Tai, P.-H.,Deng, W.-J.(2009).Process parameter optimization for MIMO plastic injection molding via soft computing.Expert Systems with Applications,36(2),1114-1122.
  4. Dasgupta, D.(Ed.)(1999).Artificial Immune Systems and Their Applications.Berlin:Springer-Verlag.
  5. Dubey, A. K.,Yadava, V.(2008).Multi-objective optimisation of laser beam cutting process.Optics & Laser Technology,40(3),562-570.
  6. Gaitonde, V. N.,Karnik, S. R.,Davim, J. P.(2008).Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass.Journal of Materials Processing Technology,204(1-3),459-464.
  7. Hsu, C.-M.(2010).PCB design improvement in the circuit between the north bridge and SDRAM through an integrated procedure.Expert Systems with Applications,37(4),2978-2990.
  8. Kovacha, J.,Cho, B. R.(2008).Development of a multidisciplinary-multiresponse robust design optimization model.Engineering Optimization,40(9),805-819.
  9. Koza, J. R.(1992).Genetic Programming: On the Programming of Computers by Means of Natural Selection.Cambridge, MA:MIT Press.
  10. Nguyen, H. H.,Jang, N.,Choi, S. H.(2009).Multiresponse optimization based on the desirability function for a pervaporation process for producing anhydrous ethanol.Korean Journal of Chemical Engineering,26(1),1-6.
  11. Phadke, M. S.,Kackar, R. N.,Speeney, D. V.,Grieco, M. J.(1983).Off-line quality control in integrated circuit fabrication using experimental design.Bell System Technical Journal,62(5),1273-1309.
  12. Routara, B. C.,Mohanty, S. D.,Datta, S.,Bandyopadhyay, A.,Mahapatra, S. S.(2010).Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding.International Journal of Advanced Manufacturing Technology,51(1-4),135-143.
  13. Sait, A. N.,Aravindan, S.,Haq, A. N.(2009).Optimisation of machining parameters of glass-fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique.International Journal of Advanced Manufacturing Technology,43(5-6),581-589.
  14. Sibalija, T. V.,Majstorovic, V. D.(2009).Multi-response optimisation of thermosonic copper wire-bonding process with correlated responses.International Journal of Advanced Manufacturing Technology,42(3-4),363-371.
  15. Wang, Z. J.,Jiang, Y. W.(2005).Dicing saw process optimization on die crack during IC packaging.ISTM/2005: 6th International Symposium on Test and Measurement, Conference Proceedings
  16. Yin, F.,Mao, H. J.,Hua, L.,Guo, W.,Shu, M. S.(2011).Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding.Materials & Design,32(4),1844-1850.
  17. 王兆煒(2000)。碩士論文(碩士論文)。台北,華梵大學機電工程研究所。
  18. 王衍智(2003)。碩士論文(碩士論文)。台中,朝揚科技大學財務金融系。
  19. 王啟華(2005)。碩士論文(碩士論文)。桃園,元智大學資訊管理學系。
  20. 吳集銓(2004)。碩士論文(碩士論文)。台中,國立中興大學電機工程學系。
  21. 林右儒(2005)。碩士論文(碩士論文)。台中,逢甲大學工業工程與系統管理研究所。
  22. 許宏仁(2006)。碩士論文(碩士論文)。高雄,國立高雄第一科技大學機械與自動化工程所。
  23. 郭博文(2006)。碩士論文(碩士論文)。高雄,國立高雄大學電機工程學系先進電子構裝技術產業研發碩士專班。
  24. 陳介元(2006)。碩士論文(碩士論文)。高雄,國立高雄第一科技大學機械與自動化工程所。
  25. 蕭宜昌(2007)。碩士論文(碩士論文)。屏東,屏東科技大學資訊管理系碩士論文。