题名

以啟發式演算法改善發光二極體之照明效果

并列篇名

Improving the Lighting Performance of an LED through a Heuristic Procedure

作者

徐志明(Chih-Ming Hsu);湯韶元(Shao-Yuan Tang);洪慈鈞(Tzu-Chun Hung)

关键词

發光二極體 ; 反光杯 ; 螢光粉 ; 基因規劃 ; 蟻群演算法 ; 多重品質特性參數設計 ; Light-emitting diode ; Reflector ; Phosphor ; Genetic programming ; Ant colony optimization ; Multi-response parameter design

期刊名称

明新學報

卷期/出版年月

39卷1期(2013 / 02 / 01)

页次

173 - 191

内容语文

繁體中文

中文摘要

發光二極體(light-emitting diodes, LEDs)已經廣泛地應用於不同的照明場所中。發光二極體的照明效果會受到其反光杯幾何形狀設計的顯著影響。在過去,設計工程師會根據光學原理及自己的經驗以決定反光杯的幾何設計,然後,透過實際生產一些反光杯以驗證其設計之可行性與照明效果,這種嘗試錯誤法不但極為花費成本且浪費時間。此外,這種方法並無法保證其所設計的反光杯幾何尺寸為最佳設計。因此,在發光二極體反光杯幾何設計上所面臨的參數設計問題是一個亟待解決的課題。由於發光二極體的整體照明效果必須透過幾種品質特性加以衡量,而這些品質特性又會受到反光杯的數個關鍵幾何設計參數和螢光粉濃度所影響,因此,它是一個較為複雜的多重品質特性參數設計問題。本研究利用基因規劃(genetic programming, GP)與連續值最佳化的蟻群演算法(ant colony optimization, ACO)提出一個系統化的方法,以解決多重品質特性參數設計問題。接著,利用一個改善反光杯設計的案例測試所提出最佳化程序的可行性與有效性。

英文摘要

Light-emitting diodes (LEDs) have been extensively applied in diverse lighting areas. The lighting performance of LEDs is significantly influenced by the geometric design of a reflector. In the past, LED design engineers have usually determined the geometric design of a reflector based on the optical principles and their own experience. The feasibility and performance of a certain design are verified through creating some real reflectors. This trial-and-error procedure is costly and time-consuming. In addition, it cannot be proven that the geometric design of a reflector is really optimal. Consequently, it is crucial to resolve the problems arising in the geometric design of a reflector as soon as possible. The performance of an LED is evaluated through several critical quality characteristics which are affected by some geometric design parameters of a reflector. Hence, this is a complicated multi-response parameter design problem. This study proposes a systematic approach based on genetic programming (GP) and ant colony optimization (ACO) for continuous domains to deal with the parameter design problems with multiple responses. A case study on improving the design of an LED reflector is used to demonstrate the feasibility and effectiveness of the proposed approach.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Adl, R. K.,Rankoohi, S. M. T. R.(2009).A New Ant Colony Optimization Based Algorithm for Data Allocation Problem in Distributed Databases.Knowledge and Information Systems,20(3),349-373.
  2. Blum, C.(2005).Ant Colony Optimization: Introduction and Recent Trends.Physics of Life Reviews,2(4),353-373.
  3. Chen, W.-C.,Fu, G.-L.,Tai, P.-H.,Deng, W.-J.(2009).Process Parameter Optimization for MIMO Plastic Injection Molding via Soft Computing.Expert Systems with Applications,36(2),1114-1122.
  4. Ciglarič, I.,Kidrič, A.(2006).Computer-Aided Derivation of the Optimal Mathematical Models to Study Gear-Pair Dynamic by Using Genetic Programming.Structural and Multidisciplinary Optimization,32(2),153-160.
  5. Dorigo M.(1992).Dipartimento di Elettronica, Politecnico di Milano.
  6. Dorigo, M.,Maniezzo, V.,Colorni, A.(1991).,Dipartimento di Elettronica, Politecnico di Milano.
  7. Dorigo, M.,Maniezzo, V.,Colorni, A.(1996).Ant System: Optimization by a Colony of Cooperating Agents.IEEE Transactions on Systems, Man, and Cybernetics-Part B,26(1),29-41.
  8. Dubey, A. K.,Yadava, V.(2008).Multi-Objective Optimisation of Laser Beam Cutting Process.Optics & Laser Technology,40(3),562-570.
  9. Gaitonde, V. N.,Karnik, S. R.,Davim, J. P.(2008).Selection of Optimal MQL and Cutting Conditions for Enhancing Machinability in Turning of Brass.Journal of Materials Processing Technology,204(1-3),459-464.
  10. Holland, J. H.(1975).Adaptation in Natural and Artificial Systems.Ann Arbor, MI:University of Michigan Press.
  11. Hsu, C.-M.(2010).PCB Design Improvement in the Circuit between the North Bridge and SDRAM through an Integrated Procedure.Expert Systems with Applications,37(4),2978-2990.
  12. Khuri, A. I.,Conlon, M.(1981).Simultaneous Optimization of Multiple Responses by Polynomial Regression Functions.Technometrics,23(4),363-375.
  13. Kim, K. J.,Lin, D. K. J.(2000).Simultaneous Optimization of Mechanical Properties of Steel by Maximizing Exponential Desirability Functions.Journal of the Royal Statistical Society Series C-Applied Statistics,49(3),311-325.
  14. Kovacha, J.,Cho, B. R.(2008).Development of a Multidisciplinary-Multiresponse Robust Design Optimization Model.Engineering Optimization,40(9),805-819.
  15. Koza, J. R.(1992).Genetic Programming: On the Programming of Computers by Means of Natural Selection.Cambridge, MA:MIT Press.
  16. Koza, J. R.,Keane, M. A.,Streeter, M. J.,Mydlowec, W.,Yu, J.,Lanza, G.(2005).Genetic Programming.New York:Springer.
  17. Koza, J. R.,Streeter, M. J.,Keane, M. A.(2008).Routine High-Return Human-Competitive Automated Problem-Solving by Means of Genetic Programming.Information Sciences,178(23),4434-4452.
  18. Leguizamon, G.,Coello, C. A. C.(2009).Boundary Search for Constrained Numerical Optimization Problems with an Algorithm Inspired by the Ant Colony Metaphor.IEEE Transactions on Evolutionary Computation,13(2),350-368.
  19. Routara, B. C.,Mohanty, S. D.,Datta, S.,Bandyopadhyay, A.,Mahapatra, S. S.(2010).Combined Quality Loss (CQL) Concept in WPCA-based Taguchi Philosophy for Optimization of Multiple Surface Quality Characteristics of UNS C34000 Brass in Cylindrical Grinding.International Journal of Advanced Manufacturing Technology,51(1-4),135-143.
  20. Sabuncuoglu, I.,Erel, E.,Alp, A.(2009).Ant Colony Optimization for the Single Model U-Type Assembly Line Balancing Problem.International Journal of Production Economics,120(2),287-300.
  21. Sibalija, T. V.,Majstorovic, V. D.(2009).Multi-Response Optimisation of Thermosonic Copper Wire-Bonding Process with Correlated Responses.International Journal of Advanced Manufacturing Technology,42(3-4),363-371.
  22. Socha, K.(2004).ACO for Continuous and Mixed-Variable Optimization.Proceedings of ANTS 2004-Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, Lecture Notes in Computer Science,Berlin:
  23. Watcharasitthiwat, K.,Wardkein, P.(2009).Reliability Optimization of Topology Communication Network Design Using an Improved Ant Colony Optimization.Computers & Electrical Engineering,35(5),730-747.
  24. Yin, F.,Mao, H. J.,Hua, L.,Guo, W.,Shu, M. S.(2011).Back Propagation Neural Network Modeling for Warpage Prediction and Optimization of Plastic Products During Injection Molding.Materials & Design,32(4),1844-1850.