题名

長度量測誤差對海龍公式應用於計算多邊形面積精確度的影響

并列篇名

Effect of the Error in the Measured Length on the Accuracy of the Calculated Polygon's Area by Using Heron's Formula

作者

楊世騰(Shih-Teng Yang);蕭宇倢(Yu-Chieh Hsiao);曾子翰(Tzu-Han Tseng);楊寶賡(Pao-Keng Yang)

关键词

海龍公式 ; 長度量測誤差 ; 多邊形面積 ; Heron's formula ; error in the measured length ; area of a polygon

期刊名称

明新學報

卷期/出版年月

41卷1期(2015 / 02 / 01)

页次

1 - 13

内容语文

繁體中文

中文摘要

如果量得三角形三邊的長度,我們可以用海龍公式求出這個三角形面積。因為多邊形土地可分割為多個三角形,所以海龍公式也可應用於一般多邊形土地面積的丈量。我們主要研究三角形邊長量測誤差對海龍公式計算面積時所產生誤差大小的影響。我們發現:若考慮長度量測誤差,使用海龍公式計算一個具有大於90度鈍角的狹長型三角形面積值時會產生相當大的誤差。我們找到一個解決的方法降低這個誤差。一般將一個邊長數大於或等於四的多邊形切割為多個三角形的方法並非唯一。在眾多的切割法中,應選擇避免出現含有大於90度鈍角的狹長型三角形的切割法,這樣利用海龍公式才可計算出比較準確的面積。

英文摘要

Heron's formula can be used to calculate the area of a triangle from lengths of three sides without any information about the angle. We can also utilize the Heron's formula to find the area for a polygon because a polygon can be divided into several triangles. However, the division into triangles is not unique for a polygon with the number of sides over three. Considering the error in measured side lengths, we found that the error in the calculated area for a polygon can be greatly reduced by choosing an appropriate division. The primary guiding principle for the optimal division is to avoid the appearance of any triangle with an angle exceeding 90 degree.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. http://www.testequipmentdepot.com/trilithic/pdf/distance.pdf
  2. Cho, E. C.(1995).The volume of a tetrahedron.Applied Mathematics Letters,8(2),71-73.
  3. Klain, D. A.(2004).An intuitive derivation of Heron's formula.The American Mathematical Monthly,111(8),709-712.
  4. Varfolomeev, V. V.(2003).Inscribed polygons and Heron polynomials.Sbornik Mathematics,194(3-4),311-331.
  5. 李兆華(1994)。中國數學史。台北:文津出版社。
  6. 蘇俊鴻編(2006)。海龍公式專輯。HPM 通訊,9(1)