题名

以差異進化演算法為基礎之機器人目標物顏色即時分割系統

并列篇名

An Object Color Segmentation System for the Robot Based on Differential Evolution Algorithm

作者

許書宇(Hsu, Shu-Yu);許陳鑑(Hsu, Chen-Chien);王偉彥(Wang, Wei-Yen)

关键词

顏色分割 ; 差異進化演算法 ; 連通標記法 ; 人形機器人 ; Color Segmentation ; Differential Evolution ; Connected Component Labeling ; Humanoid Robot

期刊名称

明新學報

卷期/出版年月

42卷2期(2016 / 08 / 01)

页次

1 - 11

内容语文

繁體中文

中文摘要

機器人進行目標物追蹤時,時常利用影像分割將目標物從背景中擷取出來,以利後續追蹤。本論文中,我們將影像分割結合差異進化演算法與連通標記法,使機器人得以自行預設目標物HSV色彩閥值,並於後續追蹤過程能即時根據環境亮暗調變HSV閥值。我們以ROBOTIS OP2智慧型人型機器人作為實驗平台,針對五種常用的目標物顏色,包括:紅、黃、綠、藍、紫,來進行實驗評估,以驗證本論文提出之機器人目標物顏色即時分割系統。

英文摘要

Color segmentation is widely used for recognizing the visual markers in a robotic tracking system. In our contribution, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers; then autonomously change the HSV threshold according to the ambient light during the tracking process. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Gonzalez, R. C.,Woods, R. E.(2007).Digital image processing.Pearson Education, Inc.
  2. Horowitz, E.,Sahni, S.,Anderson-Freed, S.(2008).Fundamentals of data structures in C.Summit, NJ:Silicon Press.
  3. Kapur, J. N.,Sahoo, P. K.,Wong, A. K. C.(1985).A new method for gray - level picture thresholding using the entropy of the histogram.Computer Vision Graphics and Image Process,29(3),273-285.
  4. Kurban, T.,Civicioglu, P.,Kurban, R.,Besdok, E.(2014).Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding.Applied Soft Computing,23,128-143.
  5. Kurugollu, F.,Sankur, B.,Harmanci, A.(2001).Color image segmentation using histogram multithresholding and fusion.Image and Vision Computing,19(13),915-928.
  6. Otsu, N.(1979).A threshold selection method from gray-level histograms.IEEE Transactions on Systems, Man, and Cybernetics,9(1),62-66.
  7. Price, K.,Storn, R. M.,Lampinen, J. A.(2005).Differential evolution - A practical approach to global optimization.Berlin:Springer.
  8. Rönkkönen, J.,Kukkonen, S.,Price, K. V.(2005).Real-parameter optimization with differential evolution.IEEE Congress on Evolutionary Computation,1,506-513.
  9. Rosenfeld, A.(1974).Adjacency in digital pictures.Information and Control,26(1),24-33.
  10. Rosenfeld, A.(1970).Connectivity in digital pictures.Journal of the ACM,17(1),146-160.
  11. Storn, R.,Price, K. V.(1997).Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces.Journal of Global Optimization,11(4),341-359.
  12. Vesterstrom, J.,Thomsen, R.(2004).A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems.2004 Congress on Evolutionary Computation
  13. Wu, Y.,Huang, T. S.(2000).Color tracking by transductive learning.IEEE Conference on Computer Vision and Pattern Recognition,1,133-138.