题名

人工智慧於司法實務之可能運用與挑戰

并列篇名

Possible Application and Challenge of Artificial Intelligence in Judicial Practice

作者

龍建宇(Chien-Yu Long);莊弘鈺(Luke Hung-Yu Chuang)

关键词

人工智慧 ; 風險評估工具 ; 量刑基準 ; 正當法律程序 ; 鑑識科學 ; 預測性執法 ; 歧視 ; 隱私權 ; 合理懷疑 ; 一般資料保護規則 ; 透明與監督 ; Artificial Intelligence (AI) ; Risk-Need Assessment Tool ; Sentencing Guideline ; Due Process ; Forensic Science ; Predictive Policing ; Discrimination ; Privacy ; Reasonable Suspicion ; General Data Protection Regulation (GDPR) ; Transparency and Supervision

期刊名称

中正大學法學集刊

卷期/出版年月

62期(2019 / 01 / 01)

页次

43 - 108

内容语文

繁體中文

中文摘要

人工智慧乃是以電腦程式模仿人類思考模式之結果,以更有效率之電腦運算,進行資料蒐集、分析。現行的人工智慧在司法審判中可用作法律檢索分析、風險評估工具、計算量刑基準、鑑識輔助系統,在專利商標實務中作為判斷侵權及核駁之依據,在執法上也可用於推算出可能的犯罪熱點而進行預測性執法。人工智慧雖然可有效運用在司法實務上,但其可能無法處理法律邏輯與常識之問題,可能對特定族群產生歧視或是對於隱私權產生侵害。另系統本身之透明性與可受監督上亦存有疑問,且在實際應用時可能受制於法令上的限制。準此,本文就人工智慧於司法實務上之可能運用與挑戰,進行全面性地探討,並提出結論與建議。

英文摘要

Artificial Intelligence ("AI") is a computer program imitating human thinking process, which uses efficient means to gather and analyze data. The AI technology has already been used in judicial practice for legal analysis, risk assessment, sentencing guideline, and forensic science. This technology could also be used to determine patent and trademark infringement and prosecution. Moreover, AI can also be used in analyzing crime hotspot and subsequently in predictive policing. Despite these benefits, some challenges indeed exist when applying AI in judicial practice. Artificial Intelligence could hardly deal with issues relating to logic and general knowledge. The AI decision-making process often creates discrimination and privacy concerns. Additionally, it is worth debating how to make the algorithm transparent and supervised. Using the algorithm and personal data should also comply with current legal rules. This article aims to address all the possible applications and challenges while using AI in judiciary, and then to conclude and suggest for the future usage.

主题分类 社會科學 > 法律學
参考文献
  1. 翁逸泓(2018)。科技人權──全民電子通訊監察與個人資料保護。臺灣民主季刊,15(1),1-43。
    連結:
  2. 張陳弘(2018)。隱私之合理期待標準於我國司法實務的操作──我的期待?你的合理?誰的隱私?。法令月刊,69(2),82-112。
    連結:
  3. 黃詩淳,邵軒磊(2018)。酌定親權行為之重要因素:以決策樹方法分析相關裁判。國立臺灣大學法學論叢,47(1),299-344。
    連結:
  4. 從工人智慧到人工智慧,期待又怕受傷害?Pentland教授與Google簡立峰表示……,研之有物,http://research.sinica.edu.tw/machine-learning-month-ai-camp-2017/ (最後瀏覽日2018/03/28)。
  5. (2017).European Parliament Press Release 20170110IPR57613, Robots: Legal Affairs Committee Calls for EU-Wide Rules (2017)..
  6. 總統府司法改革國是會議總結會議會議資料,https://drive.google.com/file/d/0B6gni5Xwp9QwaDR3Q05fRWpYaU0/view(最後瀏覽日2018/03/28)。
  7. 日本特許廳利用人工智慧審查專利與商標申請,資策會科技法律研究所,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=92&d=7826(最後瀏覽日2018/03/28)。
  8. 整合交通、毒品大數據運用警署開研討會,http://news.ltn.com.tw/news/politics/breakingnews/1732612(最後瀏覽日2018/11/11)。
  9. 花蓮地檢署數位採證中心揭牌,有效追溯毒品上源,https://www.ettoday.net/news/20180309/1127345.htm (最後瀏覽日2018/11/11)。
  10. Baraniuk, Chris, Durham Police AI to Help with Custody Decisions, BBC News (May 17, 2017), http://www.bbc.com/news/technology-39857645 (last visited Mar. 28, 2018).
  11. Barton, Benjamin H.,Bibas, Stephanos(2017).Rebooting Justice: More Technology, Fewer Lawyers, and the Future of Law.Encounter Books.
  12. Becerra, Sergio David(2018).The Rise of Artificial Intelligence in the Legal Field: Where We Are and Where We Are Going.J. Bus. Entrepreneurship & L.,11,27.
  13. Ben-Ari, Daniel(2017)."Danger, Will Robinson"? Artificial Intelligence in the Practice of Law: An Analysis and Proof of Concept Experiment.Rich. J.L. & Tech.,23,2.
  14. Benforado, Adam,堯嘉寧(譯)(2016).不平等的審判:心理學與神經科學告訴你,為何司法判決還是這麼不公平.臉譜.
  15. Berman, Jules J.(2013).Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information.Elsevier Science.
  16. Bertrand, Marianne,Mullainathan, Sendhil(2004).Are Emily and Greg More Employable than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination.Am. Econ. Rev.,94,991.
  17. Bigda, Jordan(2018).The Legal Profession: From Humans to Robots.J. High Tech. L.,18,396.
  18. Bowers, Josh(2010).Normative Innocence, and the Equitable Decision Not to Prosecute.Colum. L. Rev.,110,1655.
  19. Brauneis, Robert,Goodman, Ellen P.(2018).Algorithmic Transparency for the Smart City.Yale J.L. & Tech.,20,103.
  20. Buchana, Bruce G.,Headrick, Thomas E.(1970).Some Speculation about Artificial Intelligence and Legal Reasoning.Stan. L. Rev.,23,40.
  21. Calo, Ryan(2017).Artificial Intelligence Policy: A Primer and Roadmap.U.C. Davis L. Rev.,51,399.
  22. Chainey, Spencer,Ratcliffe, Jerry(2005).GIS and Crime Mapping.John Wiley & Sons Inc..
  23. Chander, Anupam(2017).The Racist Algorithm?.Mich. L. Rev.,115,1023.
  24. Chin, Andrew(2009).Search for Tomorrow: Some Side Effects of Patent Office Automation.N. C. L. Rev.,87,1617.
  25. Chinnikatti, Shravana Kumar(2018).Artificial Intelligence in Forensic Science, Forensic Sciences & Addiction Research.Forensic Sciences & Addiction Research,2(5)
  26. Citron, Danielle Keats,Pasquale, Frank(2011).Network Accountability for the Domestic Intelligence Apparatus.Hastings L.J.,62,1441.
  27. Coatney, Matt, The Coming AI Revolution in Digital Forensics, Accessdata (Feb. 28, 2017), https://accessdata.com/blog/the-coming-ai-revolution-in-digital-forensics (last visited Mar. 28, 2018).
  28. Copeland, Michael, What's the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?, Nvidia (July 29, 2016), https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/ (last visited Mar. 28, 2018).
  29. Cortez, Nathan(2018).Regulation by Database.U. Colo. L. Rev.,89,1.
  30. Cranor, Lorrie(2014).Panel I: Disclosure and Notice Practices in Private Data Collection.Cardozo Arts & Ent. L.J.,32,784.
  31. Crawford, Kate(2016).Can an Algorithm Be Agonistic? Ten Scenes from Life in Calculated Publics.Sci. Tech. & Hum. Values,41,77.
  32. Cutts, Matt, Google, Transparency, and Our Not-So-Secret Formula, Google Europe Blog (Mar. 2, 2010), http://googlepolicyeurope.blogspot.com/2010/03/google-transparency-and-our-not-so.html (last visited Mar. 28, 2018).
  33. David, Lehr,Ohm, Paul(2017).Playing with the Data: What Legal Scholars Should Learn About Machine Learning.U.C. Davis L. Rev.,51,653.
  34. Denicola, Robert C.(2016).Ex Machina: Copyright Protection for Computer-Generated Works.Rutgers U. L. Rev.,69,251.
  35. Dovidio, John F.(ed.)(2010).The Sage Handbook of Prejudice, Stereotyping & Discrimination.SAGE Publications Ltd..
  36. Droge-Young, Liz, How Machine Learning Is Changing Crime-Solving Tactics-Forensic Science Professors Use Artificial Intelligence to Aid DNA Analysis, Syracuse University (Feb. 8, 2017), http://thecollege.syr.edu/news/2017/Artificial_Intelligence_to_Aid_DNA_Analysis.html (last visited Mar. 28, 2018).
  37. Duarte, Natasha(2017).Building Ethical Algorithms.ABA Sci. Tech. Law,14(1),32.
  38. Edwards, Lilian,Veale, Michael(2017).Slave to the Algorithm? Why a ‘Right to an Explanation’ Is Probably Not the Remedy You Are Looking for.Duke L. & Tech. Rev.,16,18.
  39. Engle, Eric(2004).An Introduction to Artificial Intelligence and Legal Reasoning: Using Xtalk to Model the Alien Tort Claims Act and Torture Victim Protection Act.Rich. J.L. & Tech.,11,2.
  40. Ethical Aligned Design, A Vision for Prioritizing Human Well Being with Artificial Intelligence and Autonomous Systems (2018), http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf (last visited Mar. 28, 2018).
  41. European Union(2018).The European Artificial Intelligence Landscape.
  42. Executive Office of the President National Science and Technology Council Committee on Technology(2016).Executive Office of the President National Science and Technology Council Committee on Technology, Preparing for the Future of Artificial Intelligence (2016)..
  43. Executive Office of the President National Science and Technology Council Committee on Technology(2016).Executive Office of the President National Science and Technology Council Committee on Technology, Artificial Intelligence, Automation, and the Economy (2016)..
  44. Fennell, Lee Anne(1999).Between Monster and Machine: Rethinking the Judicial Function.S.C. L. Rev.,51,183.
  45. Ferguson, Andrew Guthrie(2012).Predictive Policing and Reasonable Suspicion.Emory L.J.,62,259.
  46. Government Office for Science(2016).Government Office for Science, Artificial Intelligence: Opportunities and Implications for the Future of Decision Making (2016)..
  47. Guihot, Michael(2017).Nudging Robots: Innovative Solutions to Regulate Artificial Intelligence.Vand. J. Ent. & Tech. L.,20,385.
  48. Harris, Dan & Ahuja, Gitika, Race for a Cab: When Hailing a Ride Isn't So Black and White, ABC News (Apr. 1, 2009), http://abcnews.go.com/GMA/race-cab-hailing-ride-black-white/story?id=7223511 (last visited Mar. 28, 2018).
  49. Humerick, Matthew(2018).Taking AI Personally: How the E.U. Must Learn to Balance the Interests of Personal Data Privacy & Artificial Intelligence.Santa Clara High Tech. L.J.,34,393.
  50. Joh, Elizabeth E.(2014).Policing by Numbers: Big Data and the Fourth Amendment.Wash. L. Rev.,89,35.
  51. Kamishima, Toshihiro(2012).Fairness-Aware Classifier with Prejudice Remove Regularizer.Machine Learning & Knowledge Discovery in Database
  52. Kehl, William B.(1961).An Information Retrieval Language for Legal Studies.Com. of the Ass’n for Computing Mach.,4,380.
  53. Kerr, Orin S.(2012).The Mosaic Theory of the Fourth Amendment.Mich. L. Rev.,111,311.
  54. Kowert, Weston(2017).The Foreseeability of Human-Artificial Intelligence Interactions.Tex. L. Rev.,96,181.
  55. Kroll, Joshua A.(2017).Accountable Algorithms.U. Pa. L. Rev.,165,633.
  56. Lev-Aretz, Yafit(2012).Second Level Agreements.Akron L. Rev.,45,137.
  57. MacCarthy, Mark(2018).Standards of Fairness for Disparate Impact Assessment of Big Data Algorithms.Cumb. L. Rev.,48,67.
  58. McFarland, Matt, Google's AI Just Beat the World's Best Go Player, CNN Tech (May 25, 2017), http://money.cnn.com/2017/05/25/technology/alphago-china-ai/index.html (last visited Mar. 28, 2018).
  59. Miller, Kevin(2014).Big Data, and Predictive Crime Technology: Privacy's Perfect Storm.J. Tech. L. & Pol’y,19,105.
  60. Mitchell, Faye(2010).The Use of Artificial Intelligence in Digital Forensics: An Introduction.Digital Evidence & Signature L. Rev.,7,35.
  61. Murphy, Laura W., Airbnb's Work to Fight Discrimination and Build Inclusion: A Report Submitted to Airbnb (2016), http://blog.atairbnb.com/wp-content/uploads/2016/09/REPORT_Airbnbs-Work-to-Fight-Discrimination-and-Build-Inclusion.pdf (last visited Mar. 28, 2018).
  62. Murphy, Margi, Artificial Intelligence Will Detect Child Abuse Images to Save Police from Trauma, The Telegraph (Dec. 18, 2017), https://www.telegraph.co.uk/technology/2017/12/18/artificial-intelligence-will-detect-child-abuse-images-save/ (last visited Mar. 28, 2018).
  63. Nadkarni, Prakash M.(2011).Natural Language Processing: An Introduction.J. Am. Med. Informatics Ass’n.,18,544.
  64. Nussbaum, Martha C.(1993).Equity and Mercy.Phil. & Pub. Aff.,22,83.
  65. Oskamp, Anja,Tragter, Maaike W.(1997).Automated Legal Decision Systems in Practice: The Mirror of Reality.Artificial Intelligence & L.,5,291.
  66. Oswald, Marion(2017).Algorithmic Risk Assessment Policing Models: Lessons from the Durham HART Model and ‘Experimental’ Proportionality.Info. & Comm. Tech. L.,5
  67. Paliwala, Abdul(2016).Rediscovering Artificial Intelligence and Law: An Inadequate Jurisprudence?.Int’l Rev. L. Computers & Tech.,30,107.
  68. Pasquale, Franck(2011).Restoring Transparency to Automated Authority.J. on Telecomm. & High Tech. L.,9,235.
  69. Pasquale, Frank(2015).The Black Box Society: The Secret Algorithms That Control Money and Information.Harvard University Press.
  70. Pasquale, Frank(2017).Toward a Fourth Law of Robotics: Preserving Attribution, Responsibility, and Explainability in an Algorithmic Society.Ohio St. L.J.,78,1243.
  71. Pasquale, Frank,Cashwell, Glyn(2015).Four Futures of Legal Automation.UCLA L. Rev. Disc.,63,26.
  72. Pere, Maayan,Elkin-Koren, Niva(2017).Black Box Tinkering: Beyond Disclosure in Algorithmic Enforcement.Fla. L. Rev.,69,181.
  73. Perrine, James B.(2010).Fusion Centers and the Fourth Amendment: Application of the Exclusionary Rule in the Post9/11 Age of Information Sharing.Cap. U. L. Rev.,38,721.
  74. Peterson, Latoya, Cab Drivers, Uber, and the Costs of Racism, Racialicious (Nov. 28, 2012), https://web.archive.org/web/20160326193424/http://www.racialicious.com/2012/11/28/cab-drivers-uber-and-the-costs-of-racism/ (last visited Mar. 28, 2018).
  75. Pozen, David E.(2005).The Mosaic Theory, National Security, and the Freedom of Information Act.Yale L.J.,115,628.
  76. Primus, Richard A.(2003).Equal Protection and Disparate Impact: Round Three.Harv. L. Rev.,117,493.
  77. Raja, Wali, Artificial Intelligence at the Patent & Trademark Office, Linkedin (May 11, 2017), https://www.linkedin.com/ pulse/artificial-intelligence-patent-trademark-office-wali-raja (last visited Mar. 28, 2018).
  78. Raymond, Anjanette H.(2018).Building a Better Hal 9000: Algorithms, the Market, and the Need to Prevent the Engraining of Bias.Nw. J. Tech. & Intell. Prop.,15,215.
  79. Reidenberg, Joel R.(2015).Privacy Harms and the Effectiveness of the Notice and Choice Framework.J.L. & Pol’y for Info. Soc’y,11(I/S),485.
  80. Richards, Neil M.(2013).The Dangers of Surveillance.Harv. L. Rev.,126,1934.
  81. Rieland, Randy, Artificial Intelligence Is Now Used to Predict Crime. But Is It Biased?, Smithsonian.com (Mar. 5, 2018), https://www.smithsonianmag.com/innovation/artificial-intelligence-is-now-used-predict-crime-is-it-biased-180968337/ (last visited Mar. 28, 2018).
  82. Rissland, Edwina L.(1990).Artificial Intelligence and Law: Stepping Stones to Model of Legal Reasoning.Yale L.J.,99,1957.
  83. Rossi, Francesca(2016).Artificial Intelligence: Potential Benefits and Ethical Consideration.European Parliament Think Tank.
  84. Roth, Andrea(2016).Trial by Machine.Geo. L.J.,104,1245.
  85. Ryfe, David Michael(2000).Information Systems in the San Diego Region.Cal. W. L. Rev.,36,367.
  86. Schauer, Frederick(1991).Playing by the Rules, A Philosophical Examination of Rule-Based Decision-Making in Law and in Life.Clarendon Press.
  87. Selbst, Andrew D.(2017).Disparate Impact in Big Data Policing.Ga. L. Rev.,52,109.
  88. Semmler, Sean,Rose, Zeeve(2017).Artificial Intelligence: Application Today and Implications Tomorrow.Duke L. & Tech. Rev.,85.
  89. Simpson, Brian(2016).Algorithms or Advocacy: Does the Legal Profession Have a Future in a Digital World?.Info. & Comm. Tech. L.,25,50.
  90. Sklansky, David A.(1995).Cocaine, Race, and Equal Protection.Stan. L. Rev.,47,1283.
  91. Solum, Lawrence B.(1992).Legal Personhood for Artificial Intelligences.N.C. L. Rev.,70,1231.
  92. Stiles, Edmund H.(1961).The Association Factor in Information Retrieval.J. Ass’n for Computing Mach.,8,271.
  93. Stith, Kate,Cabranes, José A.(1998).Fear of Judging: Sentencing Guidelines in the Federal Courts.University of Chicago Press.
  94. Stith, Kate,Koh, Steve Y.(1993).The Politics of Sentencing Reform: The Legislative History of the Federal Sentencing Guidelines.Wake Forest L. Rev.,28,223.
  95. Strahilevitz, Lior Jacob(2008).Privacy Versus Antidiscrimination.U. Chi. L. Rev.,75,363.
  96. Van Benschoten, Scott(2008).Risk/needs Assessment: Is This the Best We Can Do?.Fed. Probation,38.
  97. Wachter, Sandra(2017).Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR.Harv. J.L. & Tech.,31,841.
  98. White, John Valery(2004).What Is Affirmative Action?.Tul. L. Rev.,78,2117.
  99. World Intellectual Property Organization(2018).World Intellectual Property Organization, Summary of the Replies to the Note on Applications of AI to IPO Administration, WIPO/IP/ITAI/GE/18/1 (Feb. 8, 2018)..
  100. Wulff, John W.(2013).Artificial Intelligence and Law Enforcement: A 21st Century Crime Fighting Technique.Utica College.
  101. Yates, Clinton, Uber: When Cabs Whiz By, It's a Pick Me Up, Wash. Post (Sept. 28, 2012), https://www.washingtonpost.com/blogs/therootdc/post/uber-when-cabs-whiz-by-its-a-pick-me-up/2012/09/28/06a41f0c-082f-11e2-858a-5311df86ab04_blog.html?hpid=z4 (last visited Mar. 28, 2018).
  102. 王兆鵬(2010).刑事訴訟講義.元照.
  103. 王勁力(2010)。論我國高科技犯罪與偵查──數位證據鑑識相關法制問題探究。科技法律評析,3,209-273。
  104. 王進德(2007).類神經網路與模糊控制理論入門與運用.全華.
  105. 宋皇志(2017)。人工智能在專利檢索之應用初探。全國律師,21(10),27-37。
  106. 李承龍(2013)。犯罪現場調查與司法科技發展之研究。刑事政策與犯罪研究論文集,16,255-272。
  107. 李承龍(2016)。鑑識科學與科技偵查之創新應用。科儀新知,207,7-14。
  108. 林子翔(2013)。啟動新北智慧城打擊犯罪接軌國際──新北市政府與IBM「智慧城市大挑戰」專案啟動。警光雜誌,681,6-11。
  109. 林宜隆(2017)。臺灣數位犯罪及數位鑑識發展現況與未來趨勢──以「創新司法警察IEK Model智慧模型」為例。刑事政策與犯罪研究論文集,20,289-330。
  110. 林勤富,劉漢威(2018)。人工智慧法律議題初探。月旦法學雜誌,274,195-215。
  111. 松尾豐,江裕真(譯)(2016).了解人工智慧的第一本書:機器人和人工智慧能否取代人類?.經濟新潮社.
  112. 法務部,歐盟資料保護一般規則(GDPR)與我國個人資料保護法之重點比較分析,http://pipa.moj.gov.tw/cp.asp?xItem=1521&ctNode=379&mp=1(最後瀏覽日2018/11/ 22)。
  113. 邵軒磊,吳國清,黃詩淳(2018)。大數據與法資訊學──機器提取裁判內容要素之實踐。裁判時報,71,46-52。
  114. 張陳弘(2015)。新興科技下的資訊隱私保護:「告知後同意原則」之侷限性與修正方法之提出。國立臺灣大學法學論叢,47(1),201-297。
  115. 張博文(2017).犯罪偵查學理論與實務.華泰文化.
  116. 黃詩淳,邵軒磊(2017)。運用機器學習預測法院裁判──法資訊學的實踐。月旦法學雜誌,270,86-96。
  117. 葉怡成(2009).類神經網路模式應用與實作.儒林.
  118. 劉昌誠,徐建業,陳炯旭,蕭百勝(2010)。應用類神經網路建構妨害性自主罪再犯預測模型之初步嚐試。亞洲家庭暴力與性侵害期刊,6(1),43-64。
  119. 総務省情報通信政策研究所,AIネットワーク化検討会議報告書2016の公表,http://www.soumu.go.jp/meau_news/s-news/01iicp01_02000050.html(最後瀏覽日2018/03/28)。
被引用次数
  1. 洪德欽(2020)。歐盟自動駕駛車之發展策略與法律規範。歐美研究,50(2),349-431。
  2. 鄭明政(2020)。從State v. Loomis案件看AI應用於司法審判上的若干問題。台日法政研究,4,165-178。
  3. 周伯翰(2022)。AI發明的專利適格性與進步性之研究。高大法學論叢,17(2),95-99+101。
  4. (2020)。論人工智慧技術應用、法律問題定位及監管立法趨勢──以美國實務發展為核心。成大法學,39,173-235。
  5. (2021)。民事訴訟之線上起訴與遠距審理(上)──民事法院數位轉型及現代化之展望。月旦法學雜誌,316,106-124。
  6. (2022)。論人工智慧時代演算法爭議諮詢及調解──由富勒裁判理論出發。月旦法學雜誌,325,107-114。
  7. (2022)。智慧法院之發展與界限(上)──演算法、科技治理與司法韌性。月旦法學雜誌,323,72-98。