题名

因數與倍數之解題溝通能力測驗編製及其實證探究

并列篇名

The Test Design of Mathematics Communication on Factor and Multiple Problems and Its Empirical Study

DOI

10.6773/JRMS.200512.0171

作者

林原宏;何欣玫

关键词

因數與倍數 ; 解題溝通能力 ; 溝通類型 ; factor and multiple ; mathematics communication ; the type of mathematics communication

期刊名称

測驗統計年刊

卷期/出版年月

13期_下(2005 / 12 / 01)

页次

171 - 208

内容语文

繁體中文

中文摘要

本研究旨在根據因數與倍數之數學解題溝通能力的內涵,編製因數與倍數解題溝通能力測驗,以分析學生的因數與倍數的解題溝通能力。 研究對象為國民小學六年級學生,計342名。採用自編的「因數與倍數的解題溝通能力測驗」為研究工具,經統計分析後,研究結果發現: 一、本研究之溝通層次分為「表達自我想法」、「理解他人想法」與「評價他人想法」,整體而言,「表達自我想法」與「理解他人想法」優於「評價他人想法」;「因數」的溝通能力優於「倍數」的溝通能力。 二、在「表達自我概念」上,「符號表徵」的了解優於「理解題意」,「解題」優於「表達溝通」。在「理解他人想法」中,其能力表現依次為「判斷」、「轉化」、「認同說明」、「質疑辯證」。在「評價他人想法」中,「辨別」優於「澄清與補充」和「評鑑」。 三、本研究溝通類型分為內向表達型、外向理解型、全能優越型及多層障礙型;其中多層障礙型的人數百分比最高,全能優越型最少。 四、因數與倍數概念之錯誤類型分析可分為:(一)語言概念錯誤,包括題意了解錯誤、語意知識不足、專有名詞概念混淆;(二)認知概念錯誤,包括運思能力不足、粗心錯誤、運算系統錯誤、直觀法則影響;(三)策略概念錯誤,包括解題策略錯誤、計劃監控失誤;(四)個人態度錯誤,包括厭惡思考、猜測。 最後,研究者根據研究結果提出對於教學、評量實務及未來進一步的建議。

英文摘要

The purpose of this study was to design the testing tools of mathematics communication on factor and multiple problems and investigate pupils' ability of mathematics communication on factor and multiple problems. There are totally 342 sixth graders. According to the data analysis, there were some results as follows: 1. There were three levels of mathematics communication. They were ”expressing one's own concepts”, ”comprehending thinking of others” and ”evaluating thinking of others.” 2. As to ”expressing one's own concepts”, the performance of ”the symbolic representation” was better than that of ”realizing the meaning of problems.” The performance of ”problem-solving” was better than that of ”expressing”. As to ”evaluating thinking of others”, the performance of ”identification” was better than that of ”clarifying and addition” and the ”estimation.” 3. There were four kinds of mathematics communication. They were ”interior-expressing”, ”exterior-comprehending”, ”overall-excellence” and ”multiply-obstacle.” The ”multiply-obstacle” was the highest of percentage and the ”overall-excellence” was the least of percentage. 4. According to the analysis of the misconception of communication, they were misconception of language, the wrong cognition, the fault of tactics and the fault of individual attitude. Finally, according to the results of this research, some suggestions for teaching, practical assessment and future research were recommended by the researcher.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. Ann Rbor Public School(1993).Alternative assessment: Evaluating student performance in elementary mathematics.Palo Alto, CA:Dale Seymour.
  2. Bassarear, T.(2001).Mathematics for Elementary School Teachers.New York, NY:Houghton Mifflin.
  3. Boose, J.(1995).A knowledge acquisition program for expert systems based on personal construct psychology.International Journal of Man-Machine Studies,23,495-525.
  4. Burks, L. C.(1994).The use of writing as a means of teaching eight grade students to use executive processes and heuristic strategies to solve.University of Michigan.
  5. Curcio, F. R.(1985).Making the Language of Mathematics Meaningful.Curriculum Review,24(5),57-61.
  6. Department for Education and Employment(1999).The National Numeracy Strategy: Framework for Teaching Mathematics.London:Author.
  7. Eming, J.(1977).Writing as a model of learning.College composition and Communication,28,122-128.
  8. Kennedy, L. M.,Tipps, S.(1997).Guiding Children`s Learning of Mathematics.New York:Wadsworth.
  9. Mooney, C.,Ferrie, L.,Fox, S.,Hansen, A.,Wrathmell, R.(2002).Primary Mathematics: Knowledge and Understanding.Exeter:Learning Matters.
  10. Morris, J.(1983).How to develop problem solving using a calculator.Reston, VA:National Council of Teacher Mathematics.
  11. Principles and Standards for School Mathematics
  12. National Council of Teachers of Mathematics(1989).Curriculum and Evaluation Standards for School Mathematics.Reston, VA:Author.
  13. National Council of Teachers of Mathematics(1991).Professional standards for teaching mathematics.Reston, VA:Author.
  14. Polya, G.(1945).How to solve it.Princeton, New Jersey:Princeton University.
  15. Stiggins, R.,Higgins, K. M.(1992).Assessing mathematical power.Portland, Dregon:Northwest Regional Educational laboratory.
  16. The National Training Laboratories,T. Bassarear (Ed.)(2001).Mathematics for Elementary School Teachers.New York, NY:Houghton Mifflin.
  17. Vermont Department of Education(1991).Looking beyond "the answer": Vermonts mathematics portfolio program.Montpelier:Author.
  18. Webb, N. L.,Coxford, A. F.(1993).Assessment in the mathematics classroom: 1993 Yearbook.Reston, VA:NCTM.
  19. Wolfgang, C.,Glickman, C.(1988).Solving behavior problems.New York:Allyn and Bacon.
  20. 李清韻(2003)。國立台中師範學院教育測驗統計研究所。
  21. 林珮如(2002)。國立屏東師範學院數理教育研究所。
  22. 邱慧珍(2002)。國立屏東師範學院數理教育研究所。
  23. 國立編譯館(2000)。國民小學數學科教學指引。台北:國立編譯館。
  24. 國立編譯館(2000)。國民小學數學科教學指引。台北:國立編譯館。
  25. 教育部(2003)。教育部九年一貫課程數學課程綱要。台北市:教育部。
  26. 教育部(1993)。國民小學課程標準。台北:教育部。
  27. 游麗卿、國立臺北師範學院編(2000)。小學一年級學生在數學課所表現出的溝通能力。國立臺北師範學院八十八學年度師範學院教育學術論文,臺北:
  28. 黃幸美(1995)。兒童的問題解決思考研究。台北:心理。
  29. 黃國勳、劉祥通(2003)。國小五年級學童學習因數教材困難之探討。科學教育研究與發展季刊,30,52-69。
  30. 劉祥通、國立嘉義師範學院編(1997)。數學寫作教學策略初探。國立嘉義師範學院八十六學年度數學教育研討會論文暨會議實錄彙編,嘉義:
  31. 蔣治邦(1994)。國民小學數學科新課程概說(低年級)。台北縣:台灣省國民學校教師研習會。
  32. 謝堅、國立嘉義師範學院編(1997)。實驗課程中因數與倍數教材的設計。國立嘉義師範學院八十六學年度數學教育研討會論文暨會議實錄彙編,嘉義:
被引用次数
  1. 陳麒,高台茜(2019)。翻轉教學應用於偏鄉網路課輔國小高年級數學之成效。當代教育研究季刊,27(2),1-37。
  2. 賴容瑩、陳秉沛、林坤誼、李隆盛(2014)。高職校長對高職課程專有名詞的看重與理解程度分析。科技與人力教育季刊,1(2),53-83。
  3. 歐陽誾,楊時芬(2020)。PaGamO線上遊戲平臺對不同成就之七年級學生數學學習態度與學習成就之影響。教育傳播與科技研究,124,17-36。