题名

基於P測度之改進模糊測度及其模糊積分

并列篇名

An Improved Fuzzy Measure Based on P Measure and Its Fuzzy Integrals

DOI

10.6773/JRMS.200606.0001

作者

劉湘川(Hsiang-Chuan Liu)

关键词

λ測度 ; P測度 ; m測度 ; Choquet積分 ; Sugeno積分 ; λ-measure ; P-measure ; m-measure ; Choquet integral ; Sugeno integral

期刊名称

測驗統計年刊

卷期/出版年月

14期_上(2006 / 06 / 01)

页次

1 - 14

内容语文

繁體中文

中文摘要

在模糊測度中,常用之Sugeno之λ測度雖靈敏,但不恆存在非可加性測度,Zadeh之P測度,恆存在非可加性測度,且計算簡易,但測度較不靈敏,且只能處理特定之次可加性測度。本文提出基於P測度之改進模糊測度,則能兼顧前二者之優點,藉以求取Choquet積分值或Segeno積分值,可改進與整合計分有關之決策方法之分析功效。

英文摘要

Sugeno's λ-measure is the most often used fuzzy measure to aggregate criteria in decision making problems with the assumption that there are interactions among criteria. It is a sensitive fuzzy measure. But its solution of nonadditive measure does not always exist. Zadeh's P-measure always has the easy computing solution of nonadditive measure. But its solution of non-additive measure is not sensitive enough as the Sugeno's λ-measure. In this study, we propose an improved fuzzy measure based on P-measure and its solution of nonadditive measure is not only always existed but also easy computed and sensitive. Three fuzzy measures, including λ-measure, P-measure, and our proposed m-measure are used to calculate two different kinds of fuzzy integral, Choquet integral and Sugeno integral for student’s performance based on a Basic Competence Test by 10 simple examples. The results show that our proposed m-measure is the best among the three fuzzy measures to aggregate criteria in decision making problems when the interactions among criteria exist.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. Choquet, G.(1953).Theory of capacities.Annales de l’Institut Fourier,5,131-295.
  2. Dempster,A.P(1967).Upper and lower probabilities induced by multi-valued mapping.Annals of Mathematical Statistics,38,325-339.
  3. Shafer,G.(1976).A Mathematical Theory of Evidence.Princeton, New Jersey:Princeton University Press.
  4. Sugeno,M.(1974).Tokyo,Japan,Tokyo Institute of Thchnology.
  5. Wang, Z.,Klir, G. J.(1992).Fuzzy measure theory.New York:Plenum Press.
  6. Zadeh,L.A.(1978).Fuzzy sets as a basic for a theory of possibility.Fuzzy Sets and Systems,1,3-28.
被引用次数
  1. 胡宜中、邱苑慈、林雅惠、王仁宏(2012)。應用模糊積分於國內旅遊網站服務品質之評估。明新學報,38(2),85-105。
  2. 劉湘川(2007)。基於v測度之Choquet積分迴歸模式。測驗統計年刊,15(下),1-14。
  3. 劉湘川(2008)。二階L測度及其Choquet積分迴歸模式。測驗統計年刊,16(上),1-12。
  4. 劉湘川(2008)。基於η完全測度與ε完全測度之Choquet積分迴歸模式。測驗統計年刊,16(下),1-15。
  5. (2006)。λ測度之改進模糊測度及其模糊積分。測驗統計年刊,14(上),15-28。