题名

基於ν測度之Choquet積分迴歸模式

并列篇名

The Choquet Integral Regression Model Based on v-Measure

DOI

10.6773/JRMS.200712.0001

作者

劉湘川(Hsiang-Chuan Liu)

关键词

λ測度 ; P測度 ; v測度 ; Choquet積分 ; Choquet積分迴歸模式 ; λ-measure ; P-measure ; v-measure ; Choquet integral ; Choquet integral regression model

期刊名称

測驗統計年刊

卷期/出版年月

15期_下(2007 / 12 / 01)

页次

1 - 14

内容语文

繁體中文

中文摘要

當欲進行綜合評價之多種屬性間具潛在交互作用時,傳統可加性測度分析方法雖計算方便,常功效不彰,此時應考慮採用模糊測度與模糊積分,常用之模糊測度,有Sugeno (1974)λ之測度、Zadeh (1978)之P測度,劉湘川(2006a)指出測度不恆存在非可加性測度,P測度靈敏度不足,劉湘川(2006a, b, c, d)先後提出具靈敏度且恆存在非可加性測度之逐次改進模糊測度;二值m測度、ρ測度、多值m測度,本文指出多值m測度之聯合事件模糊測度之定義未兼顧基本事件測度之一致性,特提出改進之模糊測度,稱為「v測度」,進而提出基於v測度之Choquet積分迴歸模式,將有利於具潛在交互作用資料之綜合評價與預測分析。

英文摘要

When interactions among criteria exist in multiple decision-making problems or forecasting problems, the performance of the traditional additive scale method is poor. Non-additive fuzzy measures and fuzzy integral can be applied to improve this situation. The λ-measure (Sugeno, 1974) and P-measure (Zadeh, 1978) are the most often used fuzzy measures, Hsiang-Chuan Liu (2006a) pointed out that the λ-measure does not always exist the solution of non-additive fuzzy measures, and the P-measure has poor sensitivity. Hsiang-Chuan Liu (2006a, b, c, d) has sequentially proposed three improved non-additive fuzzy measures; m-measure, ρ*-measure, polyvalent m-measure. This paper pointed out that there are non-consistence between the definitions of measures of joint events and the measures of basic events and empty event in previous three improved non-additive fuzzy measures. In this paper, the improved non-additive fuzzy measures, v-measure, with completely consistent measure definitions for all events is proposed and a new Choquet integral regression model based on this v-measure is also proposed.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. 劉湘川(2006)。λ測度之改進模糊測度及其模糊積分。測驗統計年刊,14,15-28。
    連結:
  2. 劉湘川(2006)。基於多值m測度之Choquet積分迴歸模式。第七屆海峽兩岸心理與教育測驗學術研討會,臺北市:
    連結:
  3. 劉湘川(2006)。基於P測度之改進模糊測度及其模糊積分。測驗統計年刊,14,1-14。
    連結:
  4. 劉湘川(2006)。λ測度之改進模糊測度及其模糊積分。測驗統計年刊,14,15-28。
    連結:
  5. 劉湘川(2006)。基於P測度之改進模糊測度及其模糊積分。測驗統計年刊,14,1-14。
    連結:
  6. Choquet, G.(1953).Annales de l'Institut Fourier.5,131-295.
  7. Dempster, A. P.(1967).Upper and lower probabilities induced by multivalued mapping.Annals of Mathematical Statistics,38,325-339.
  8. Shafer, G.(1976).A Mathematical Theory of Evidence.Princeton, New Jersey:Princeton University Press.
  9. Sugeno, M.(1974).Tokyo, Japan,Tokyo Institute of Technology.
  10. Wang, Z.,Klir, G. J.(1992).Fuzzy Measure Theory.New York:Plenum Press.
  11. Zadeh, L. A.(1978).Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems,1,3-28.
  12. 翁惟盛、張凱怡、林文質、劉湘川(2006)。不同模糊測度Choquet積分迴歸模式之比較。第七屆海峽兩岸心理與教育測驗學術研討會,臺北市:
  13. 劉湘川(2006)。廣義m測度之模糊積分及其在測驗整合計分之應用。第三屆測量統計方法學學術研討會暨台灣統計方法學學會年會,嘉義市:
被引用次数
  1. 劉湘川(2008)。二階L測度及其Choquet積分迴歸模式。測驗統計年刊,16(上),1-12。
  2. 劉湘川(2008)。基於η完全測度與ε完全測度之Choquet積分迴歸模式。測驗統計年刊,16(下),1-15。
  3. (2006)。基於γ完全測度之Choquet積分迴歸模式。教育研究與發展期刊,2(4),87-107。